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Abstract

Modern Artificial Agents will increasingly leverage AI speech synthesis models to ver-
bally communicate with their users. This study explores the integration of breathing
patterns into synthesized speech and their potential to deepen empathy towards said
agents, testing the hypothesis that the inclusion of breathing capabilities can signifi-
cantly enhance the emotional connection in human-AI interaction.

Breathing patterns have not been unequivocally linked to human emotional states,
but respiration has been consistently proven to be involved in emotions’ appraisal and
regulation, and literature suggests that an inestimable expressive potential may lie be-
hind respiratory noises and their rhythm. Despite this, breathing is hardly involved in
speech synthesis models, and literature on breathing agents is still limited.

We first perform a thorough evaluation of open-source and commercial Speech Syn-
thesis models to understand the breathing synthesis capabilities of state-of-the-art ar-
chitectures. We then proceed to assess the influence of breathing on the capacity of
the voice to evoke empathy. The research methodologically diverges from traditional
empathy studies by proposing to the subjects the resolution of an emotional dilemma
within a cooperative game scenario, where they face a choice reflecting their empathic
engagement with an AI partner.

The findings indicate that breathing in synthesized speech significantly enhances
agents’ perceived naturalness and users’ empathy towards them. These insights un-
derscore the importance of breathing in speech synthesis for AI design and call for its
consideration in future models and interactive Artificial Agents. Ultimately, the study
aims to contribute to the development of a more empathetic digital world through en-
hanced human-AI interaction.
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Note to reader / Cultural References

Humans’ perception is a tool rich of sensory modalities, powerful when exploited fully.
Whenever possible, we instinctively look for cues on every modal media available, to
build an accurate estimation of the environment around us. Even when communicating
it is important for us to investigate on what could tell us more about the other person.
We look for micro-expressions, we find meaning in voices’ pitch transitions, often we
might seek for a little smile. We spent thousands of years developing language, passing
from drawings, to hieroglyphics, to non-pictorial symbols, eventually achieving the pos-
sibility of explicitly communicating abstract ideas and emotions. This addition enriched
deeply our face to face interactions... yet it is evident how the advanced word encoding
that present language gave us, sometimes, leads to favour efficiency of transmission over
richness in sensory modalities. Thanks to verbal language, ideas can be simply laid
down, physically chained to a piece of paper, usually in black on white. Stripping the
information down to the bare essential also makes it possible for me to reach you, reader,
and communicate my curiosity towards human behaviour and computer sciences on this
same document. I truly cannot be more thankful to be able to reach you this way. Still,
aside from convenience of distribution, this is probably not the most beautiful way to
communicate between each other, and I wish you could hear me speak, see me move my
hands (I am also Italian...), connect and periodically break eye contact.
To read between the lines, is not only a practical need for communication efficiency. The
uncertainty reduction theory by Berger and Calabrese hints at the fact that without the
need of understanding the other further, the interaction almost becomes useless and not
in our interest [1]. In many of us, there is a peculiar allure towards the mysterious or the
unknown, arguably because of the pleasure for our intellect in understanding further,
or maybe because we seek a connection with something greater, never actually under-
standable. Nothing better than art can be example of this, powerful testimony of our
inner need of symbolistic communication, to the self and to the others, to the present
and to the future. Two works in particular are to me important for this study and can
be seen as triggers of the creative process that lead to this proposal. Firstly, we can
see how written language is able to gain one bonus sensory modality in Apollinaire’s
“Calligrammes” collection. Poems’s words are arranged in ways to visually represent
what they are actually describing, providing additional cues for the experience of the
reader. A second important example, is Arturo Martini’s “Contemplazioni”, the so
called “mute book”. In this work, no word is present at all, instead, its language and
communicative power is achieved through sequences of black vertical marks interrupted
by the white of the pages. Only rhythmic representations, without any verbal reference.
Both works give power to non verbal cues; the white in between the black symbols is
not anymore just a surface to lay the message on, but gains communicative power. In
the same way as Contemplazioni celebrates the interruption between the black marks,
the work presented in this thesis wants to investigate the communicative power of the
breathing pauses during speech, their irregular but persistent rhythm, embellished by
occasional disfluencies such as “uh”, “um” or “ah”.
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(a) Il pleut, Guillaume Apollinaire (b) Contemplazioni, Arturo Martini

The study also draws significant inspiration from key cinematic pieces. A first instance
to cite is Spike Jonze’s “Her”. Set in an increasingly-near-future Los Angeles, it explores
the intricate emotional relationship between an advanced AI Vocal Assistant, Samantha,
and a man, Theodore. In a particularly relevant scene, Theodore is bothered by the
agent’s breathing noises, arguing that it doesn’t truly require oxygen. To this, Saman-
tha responds “I was just trying to communicate...”. The exchange hints at the complex
role of breathing in communication, that transcends its biological purpose; at the same
time, it questions what the true reactions of users might be to a hyperrealistic Breathing
Artificial Agents: would the integration of such realism be negatively impacted by its
inherent artificial nature?
A special citation goes to “2001: A Space Odyssey”, by Stanley Kubrick and Arthur C.
Clarke, which AI character (HAL 9000) is directly referenced in the title of this thesis.
The present study borrows one important emotional dilemma presented in the movie,
and poses it at the core of our empathy evaluation by proposing it to participants inside
a gamified environment.
The breathing agent introduced in this research inherits its name from Psyche, goddess
of the soul or “Breath of Life” in greek mythology, to symbolise the aim of bringing life
and depth to Artificial Agents by integrating this soulful Breath.

Thank you for your interest in this work.
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1 Introduction

Moving into an era dominated by Machine Intelligence, with Agents becoming more
and more integrated into our society, our engagement with such entities is set to grow
consistently. As we increasingly turn to Artificial Agents for interactions, the funda-
mental requirements of these transcend the mere utilitarian scope of efficient content
communication. In this context, the enhancement of agents’ expressive abilities is not
only a luxury but a necessity, to foster more meaningful connections, and to enable a
better integration in society. Emotionally intelligent agents could potentially de-escalate
frustration in customer support settings, adjust teaching style in tutoring applications,
bolster human cooperation with robots or even provide companionship for the elderly
population. The challenge in achieving such intelligence with computational approaches
often lies in bolstering agents’ anthropomorphism.

In the quest for human-like emotional expressionism, speech is one of the protago-
nists. It is through speech that we most frequently convey emotions and intentions, both
through verbal language and conscious or subconscious nonverbal cues. These might take
the form of tone or rhythm variations, emotional expressions such as “sighs”, “gasps”,
“yawns”, disfluencies such as “uh” or “um”, or, relevantly, breathing pattern variations.
The artificial generation of emotional utterances is a demanding and intricate task. The
first computer to ever be able to artificially produce speech was the IBM 704, produced
in 1961 and programmed by John Kelly and Louis Gerstman. This set the stage for
the now thriving field of “Speech Synthesis”, vividly brought to the public eye only
seven years later in 1968 by HAL9000, the sentient computer from the movie “2001: A
Space Odyssey”. Such early speech synthesis designs, while arguably clear and distinct,
lacked the emotional depth of human voices. Modern approaches utilize Neural Net-
works to model and reproduce the variability of humans’ speaking styles, and we have
now progressed to synthetic voices that are sufficiently nuanced and expressive.

This thesis focuses on a less explored facet of speech synthesis for artificial agents:
the incorporation of breathing. In particular, it aims to explore the interplay between
synthetic breath patterns in speech and the perceived empathetic qualities of artificial
agents. The subtle cues of breathing noises or emotional expressions are still hard to
genuinely reproduce through computational approaches and pose new challenges and
questions in both fields of Generative AI and Human-Computer Interaction. Important
technical obstacles are the collection of adequately labeled emotional speech data that
incorporates breathing, and the design of models that can predict the correct placement
of disfluencies and respiration noises given its emotional arousal. Moreover, embodied
agents will need to synchronize their animations or robotic movements to display visual
breathing cues, such as the lungs’ inflation and deflation, together with the audio cues,
in what should be a perfect multimodal synchronization. Inside the field of Human-
Computer Interaction, an important challenge when bolstering anthropomorphism is
avoiding the uncanny valley: a phenomenon appearing when artificial agents achieve a
high, but not quite, human resemblance, leading to feelings of eeriness or discomfort
in users. Finally, the evaluation of hardly observable (and definable) concepts such as
empathy and emotions constitutes a complexity on its own, and is approached in the
literature with a variety of methodologies and from a variety of perspectives.

Important, driving questions that the present research tries to tackle regard whether
or not we can genuinely empathize with Artificial Agents. How will we rapport with
such ever-spreading entities and their increasing empathic capabilities? Will we forever
be reluctant to the authenticity of their emotions?
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In the following subsections, we will introduce key concepts fundamental to this project
and better explain the significance of our research’s contribution to the current literature.
We will start with the concept of Empathy and its definition in the field of Human-
Computer Interaction. Subsequently, we will delve deeper into the importance of speech
communication and all its nuances in expressing emotions, as well as describing the
concept of spontaneous speech. Finally, we will detail the role of breathing, and its
potential, in enhancing empathy towards artificial agents. At the end of this introductory
chapter is the Research Question.

1.1 Empathy in Human-Computer Interaction

Empathy is a central feature of human interaction. Core moral values of society are built
on top of our ability to understand the other. What we refer to with the word “empa-
thy” in this work, is the ability to recognize another entity’s feelings and, importantly,
to share that feeling and act accordingly. Many studies focus on the psychological foun-
dations of it or its neuro-physiological factors. For this research, the scope is the one of
emotions in Human-Computer Interaction: the so-called field of Affective Computing.
In this field, empathy is a target behaviour to obtain, bilaterally. Affective interaction
between humans and artificial agents can in fact be analysed from two perspectives:
with the human as observer and the agent as trigger, or with the human as trigger and
the agent as observer [2].

Both perspectives are relevant:

• It is important for the software to understand our emotional state;

• It is important for artificial agents to communicate emotionally with the users.

Given the two, Paiva formulates the following definition of empathic agents:
“Empathic agents are (1) agents that respond emotionally to situations that are more
congruent with the user’s or another agent’s emotional situation or (2) are agents that,
by their design and behaviours, lead users to respond in a way that is more congruent
with the agent’s emotional situation.” [2].

Figure 1: Agent as observer [3].
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Figure 2: Agent as trigger [3].

The recognition of users’ emotions by artificial agents (agent as observer) is relevant for
example in user adapting purposes. Persuasive applications can adapt to the emotional
state to suit their methodology to users’ state; in games and serious games, it can be
used to adapt difficulty, lower or increase the cognitive load [4]. Moreover, artificial
agents that can understand the users’ emotional state are seen as more likeable and
trustworthy [5], significantly improving the interaction.
Understanding the emotions of the user can also inform the consequent empathic reac-
tion of the agent, which emphasizes the importance of the opposite perspective as well,
with the Agent as trigger and the user as observer. Achieving an appropriate empathic
response from artificial agents brings significant improvements in the interaction. In
Terzioglu et al.’s study on collaborative Robots [6], it was examined the effect of adding
appeal, smoothness in movement and breathing to provide social cues from robots to
humans. The hypothesis is that through a perceived improvement in the anthropomor-
phism of the robots, likeability would be enhanced, as well as bolstering human-robot
collaborations. The results prove that there is an increase in many of the examined
features of anthropomorphism, and the breathing features in particular had a great im-
pact in improving the interactions. Samrose et al. showed that empathic conversational
agents can significantly reduce boredom caused by repetitive tasks [7]. Chin et al. found
that agents that respond in an empathic way to verbal abuse significantly increase guilt
and decrease anger in the user, confronted with avoidance or counterattacking reactions.
Moreover, they are evaluated as significantly more likeable and generally perceived as
more intelligent [8] (interestingly, the counterattacking one scored higher in anthropo-
morphism). Empathic agents have also been used for educational purposes. An example
of this is FearNot! [9]: a pedagogical game designed to foster peer intervention in bul-
lying incidents, for children between the 7 and 11 years of age. The experience tries
to encourage empathy towards a virtual bullied child, to which the users need to give
suggestions, essentially acting as their “invisible friend”. The agent was successful in
the German children sub-group, while no significant change was found in the English
one. This highlights the fact that the agent’s design has to be tailored to the specific
context of the observer, as empathy not only changes depending on personality traits
but also differs across cultures [3]. Paiva et al. [3] compiled a broad set of studies and
agents designs, as testimony that “the presence of empathic responses by machines leads
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to better, more positive and appropriate interactions”. However, they empahsize that
the extent to which the interaction is improved also depends on specific design choices:

• The empathic features and general characteristics of the agent. Additional re-
sources on this matter can be found from as early as 2006 with Hone [10], which
found that different features of an empathic agent change its efficiency in reducing
users’ frustration, or Bickmore’s studies on relational agents [11] [12] [13];

• The designed context and empathy mechanism to which the study relies on. Em-
pathy can be due to automatic emotional responses, or by formulating a story
and context inside which agent and user can build a relationship. With the latter
giving the possibility of observing a more advanced perspective-taking mechanism.

Finally, certain design choices can also lead to unintended emotional responses from
users, as detailed in Chapter 2.4. Because of this, it is pivotal to integrate the literature
of empathic agents with novel examples, to better understand which design choices more
authentically resonate with human emotions.

Figure 3: Empathic agent character used in 2006 by Hone [10].
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1.2 Speech Communication

Speech is probably humans’ most direct modality of communication. The high com-
plexity of our language is paired with sophisticated sound articulation to achieve an
impressively efficient encoding of information to sounds. Our use of the tongue in this
process is unprecedented in primates [14]. The information conveyed through our voices
goes often beyond the mere encoding of the words: it overflows the vessel and spills
out information about the inner emotional state of the individual, as we will see in the
following subsections. Additionally, we can often make assumptions about the social
background, ethnicity or country of origin of the speaker based on accent and other
vocal cues [15], reconstructing through inference a context that can make us understand
the message better, or, in some cases, make us fall into the trap of intergroup biases and
over-stereotyping, leading to harmful prejudice [16].

In 2023, most smartphones come with an embedded voice assistant, and the market
of this type of agents is increasing, with examples such as Amazon Alexa or Google
Home populating many households. In 2022 the number of voice assistant users in the
United States was estimated to be 142 million, or around 42% of the population of the
time [17]. Forecasts predict that in 2024 the number of such speech based assistants will
surpass the human population, reaching the 8.4 billion units [18]. Given the rise of voice
assistants to such an impactful extent, and the progresses in the field of artificial speech
synthesis, we decided to focus on the audio modality and on its possibilities to trigger
empathy in users. To do so, we decided to abstract as much as possible from the actual
content of the speech, as that can be addressed when focusing on textual modalities.
Speech offers numerous other ways to convey messages beyond overt verbalization.

1.2.1 Paralinguistics

What we do not explicitly say, and its implications in communication, is studied in the
field of Paralinguistics, researching how we non verbally convey emotions, intentions
and a lot more. Non verbal cues in communication can vary across languages and
cultures. Direct eye contact, for example, can be considered attentive and respectful
in some cultures (e.g. in most Western countries), but it is considered aggressive and
disrespectful in some others, such as in Japan and Korea. Prosodical cues’ importance is
even accentuated when the communication cannot be achieved through linguistic means,
for example when speaking with somebody who does not understand our language, or
to an infant that is still in a preverbal stage (i.e. not understanding words). For
the latter, studies have shown that the message is mainly carried out by intonation
and rhythm variations. When talking to a baby we instinctively perform modifications
to our usual adult-adult prosody [19]. Higher pitch, greater tone variability, shorter
utterances, and longer pauses are all reported modifications when speaking to preverbal
infants across many languages and cultures [20]. Although such paralinguistic cues vary
in very nuanced and instinctive ways, they are important to the point that through
their analysis it is possible to detect Autism Spectrum Disorder in children from the 3
years of age, by demonstrating differences in facial expressions and higher pitch cries
[21]. Furthermore, for years, in the ADReSS-M Challenge [22], many studies have been
produced addressing the multilingual detection of Alzheimer’s Dementia by analyzing
speech instances.

As said, for this study, we are specifically interested in Paralinguistics belonging to
the auditory modality: the ensemble of acoustic and rhythmic effects performed while
producing words, defined as “Prosody” [23]. Speech’s tone and pitch characteristics, as
well as its pauses, either filled by silence or breathing and disfluencies, are all of great
importance in communication, with a crucial role in helping listeners discern between
word boundaries, highlighting relevant information and expressing emotions [24].
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1.2.2 Rhythm & Sound

Tone and rhythmical characteristics are among the main means of paralinguistic com-
munication in spoken language. However, they are not only important paralinguistic
concepts. As explained in the following paragraphs, they are thought to be the foun-
dational roots of verbal communication, still defining deep cultural differences in com-
municative choices between languages, but also constituting an expressive inter-cultural
bridge for different populations.

Speaking in Tones. In John Ohala’s “frequency code” theory [25], he asserts that
tonal cues originated in our pre-linguistic era, and work in communication not only
across cultures but even across species. This communicative code is based on the fun-
damental frequency f0 (the lowest frequency of a sound and perceived as its pitch) and
on the richness of harmonics (overtones that add timbre to the sound) to communicate
meanings such as “assertive” and “harmless” or “dominant” and “dangerous”, hinting
at the importance of intonation and pitch in emotive communication.
Tone variations are not only a key emotional cue, in some languages it is essential to
distinguish the entire meaning of a word: these group of tongues are called Tonal Lan-
guages. A classic example is the word “ma” in Mandarin Chinese. “If you say it the way
an English-speaker would say it, just reading it sitting by itself on a page, then it means
scold. Say ≪ ma ≫ as if you were looking for your mother ma? and it means rough. If
you were just whining at her ma-a-a?!? with your voice swooping down a bit and then
back up even higher, that would mean, believe it or not, horse.” [26]. In English, the
tone is used for example to indicate a question, by raising the pitch towards the end of
a sentence, or to highlight a word in the sentence, but does not help in differentiating
words, which makes it a Pitch-Accent Language.

Speaking in Rhythms. The perception of rhythm has played a significant role in
human history, dating back to ancient times. One of the earliest known examples of
rhythmic perception can be found in the drumming patterns of indigenous cultures
throughout the world, such as in Africa, the Americas, and Australia. Rhythm, per-
ceived as the unfolding of temporal structures and timed stimuli, is critical to listeners’
emotional and behavioural responses [27]. Moreover, rhythm is not a simple direct prod-
uct of timed stimulus, instead, our mind and brain has an active role in the perception
of it [27]. An example of this contribution has been shown decades ago with the obser-
vation of the “tick tock” phenomenon [28]: an isochronous (i.e. happening at constant
intervals of time) stream of identical sounds is perceived by humans as an alternation
of strong and weak notes. Believe it or not, our clocks do not make “tick tock” sounds,
they do not alternate two tones, they rather just “tick tick” instead.

In verbal communication rhythm has a big role. Recent studies have demonstrated
how a better ability of rhythm perception enhances conversational quality and is a big
factor in rhetorical success [29]. Moreover, Ververidis and Kotropoulos [30] report, in
their survey of emotional speech recognition studies, the “speech rate” feature as one of
the main factors in emotion recognition. This is defined in papers either as the “inverse
duration of the voiced part of speech determined by the presence of pitch pulses”, or
as the “rate of syllabic units” and shows clear differences in many papers of the review
depending on the emotional state.

Isochrony is also an important factor in languages distinction, by identifying their
specific production rhythm and division of time. There are two main families of lan-
guages in the rhythm continuum: Syllable timed and Stress timed. In the former, speech
is produced with the syllables taking around the same amount of time. In the latter
instead, syllables have different duration, and the time between consecutive stressed syl-
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lables is kept the same. Spanish, Italian, French, Turkish, Chinese are some examples
of syllable timed languages. English, German, Dutch and Catalan are some examples
of stress timed languages. Brazilian Portuguese belongs to the first, while European
Portuguese to the latter: their key difference in rhythm might significantly contribute
to the different perception of the two.

The algorithms that can give voice to Virtual Agents have made big steps ahead in
improving tonal and syllable articulation, but our communication modalities in speech
are not limited to these. Inside language, an instinctive and necessary behaviour is
the one of breathing planning and the production of disfluencies (such as “uh”, “um”).
The rhythm of these features can be of great importance inside empathy’s mechanisms,
and has to be distinguished from the prosodical rhythm because it is related but not
congruent with syllables’ rhythm. Considering breathing’s rhythm and sound is crucial
for studies that explore empathic communication, as its timing heavily influences the
planning of future words and its frequency can give insights on the emotional arousal
of the speaker. We will explain in detail the importance of breathing in Chapter 1.3,
while the last subsection of the current Chapter will introduce the concept of sponta-
neous speech. This is the specific type of speaking style usually employed in colloquial
situations, where features like disfluencies and breathing gain more importance because
of the need of performing extemporaneous speech planning.

1.2.3 Spontaneous Speech

An important distinction in humans’ speaking style comes from the spontaneous and
non-spontaneous nature of speech production, which can significantly impact the struc-
ture, content, delivery, and underlying cognitive processes involved in communication.
What we will refer to as “spontaneous speech” are speaking instances characterized by an
unplanned and unstructured nature, typically produced in real-time without the benefit
of prior planning or editing. Spontaneous speech often includes repetitions, false starts,
expressive sounds such as “sighs” or “laughs”, and disfluencies, such as “um” and “uh”.
“Non-spontaneous speech”, on the other hand, is pre-planned and structured. It often
follows a logical organization and has a more consistent syntax, with well-formed sen-
tences and fewer disfluencies. This results from the speaker’s possibility to pre-compose
and revise their speech, ensuring a higher level of coherence and clarity. Because of
its pre-planned nature, non-spontaneous speech generally exhibits more controlled and
consistent prosody. The speaker’s intonation, rhythm, and tempo are likely to be more
stable and predictable, as they have been rehearsed or pre-determined. It is therefore
clear why this distinction is important to make when studying paralinguistic features
and their impact on emotional content.

Another important difference to make is the role of pauses and the impact of breath-
ing in the two presented types of speech. In spontaneous speech, pauses often reflect the
cognitive processes occurring as the speaker formulates their thoughts and manages in
real time their need for inhalations and exhalations. In non-spontaneous speech, pauses
are more deliberate and can be strategically employed to create emphasis, allow for
audience comprehension, or signal a transition between topics. By providing the addi-
tional cues of breathing pauses, disfluencies and other expression sounds, spontaneous
speech has the potential of enhancing the emotional content delivered by an Artificial
Agent. Moreover, spontaneous speech has the advantage of sounding more colloquial,
which might make this speaking style more suitable for agents who have to interact in
a friendly, relatable way, for example in teaching assistant applications. So “Should
Agents speak like, um, Humans?” some first answers to this question come from the
accordingly-titled study by Pfeifer and Bickmore, in 2009 [31]. The approach they took
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was the exposure of 23 participants to either an agent that used conversational fillers or
its version that did not (a between-participants design). The subjects would then answer
a questionnaire about their judgment on the satisfaction, trust, likeness, knowledgeabil-
ity and naturalness of the agent. The study did not reach significant results, probably
due to the limited sample size. Interestingly, the subjects reported mixed feelings about
the agent. Five participants indicated that the use of fillers by a conversational agent
seemed inappropriate, given that computers have the ability to speak perfectly, and
another five participants indicated that the usage of fillers by the agent was a positive
aspect of the conversation and “humanized” the experience. Other studies on conversa-
tional fillers found a positive impact on the perceived social presence [32] of the agent,
and on its responsiveness, agency, aliveness and likeability [33]. The question, though,
remains relevant today: how suitable is spontaneous speech as a means of communica-
tion for Artificial Agents? We aim to contribute to this query by focusing our study on
the impact of the breathing cue in Virtual Agents’ speech.

1.3 Breathing and Emotions

Breathing noises are a feature present both in spontaneous speech and non-spontaneous
speech because their main task is of physiological nature: providing oxygen to our bod-
ies. Evidence shows that breathing has an impact on speech planning, and conversely, is
affected by speech planning [34]. However, on occasions in which we do not have to per-
form extemporaneous speech planning, such as in read (or memorized) speech, breathing
instances can be organized around grammatical sentence boundaries [35], possibly min-
imizing its impact on the speaking flow.

Even if we maintain to some extent conscious control over it, respiration is an invol-
untary physiological process controlled by the Autonomic Nervous System (ANS), the
part of our nervous system that controls unconscious tasks. The relationship between
physiological responses (such as breathing) and emotions has been long debated, with
various arguments on the specificity of physiological responses depending on affect, and
their causality direction. One of the earliest theories in the field is the James-Lange
Theory [36], dated back to 1894. This supports a complete causal correlation between
physiological reactions and emotions and implies that each set of ANS responses leads
to the perception of a distinct emotion with absolute emotion specificity. Diametri-
cally opposed is the Cannon-Bard theory [37] from the 1920s which instead states that
emotional experience and physiological arousal arise independently. From this, the con-
cept of non-specificity of emotions: without causality, similar physiological responses
can happen with the same emotion. Some subsequent theories advocate for a more
contextual specificity of emotions and physiological reactions such as in Lazarus (1980)
[38] or Leventhal (1982) [39] [40] cognitive theories. Leventhal in particular supports
the idea of an interaction between emotions and cognition, in which one influences the
other and vice-versa. Contemporary researchers mostly refute absolute specificity, as
unambiguous signs of physiological activity based on emotion are hard to find. An ex-
ample of this neglect can be seen in Feldman-Barret’s Theory of Constructed Emotions
[41] (2006), which is today one of the most widely recognized theories on emotions in
cognitive psychology, also supported by studies in the field of neuroscience. The theory
posits that affect should be recognized as a continuum, instead of being discretized in
emotional categories, advocating the impossibility of defining a specific set of emotions
to which attribute physiological signatures. Furthermore, it states that the brain works
as a prediction model, rather than a reaction model. New physiological responses and
affective state emerge then as a combination of past experiences, sensory input (both
from the outside world and the body itself), and the current affective state. This means
that the same emotion can lead to different physiological patterns (including breathing
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patterns) depending on context and individual.
Because of its voluntary-involuntary duality, breathing is a physiological symptom

that holds the possibility of conscious manifestation. If the brain, physiological re-
sponses and emotions are truly completely intertwined with each other, as inferred, for
example, in the constructive approach of Feldman-Barret, then the manipulation of the
respiratory profile can cause changes in our emotional state and in other physiological
symptoms. This has been seen to be true in various experiments. Conscious changes
in breathing are known to be linked to cardiovascular and skin conductance responses
[42]. Moreover, Philippott et al. (2001) [43] found noticeable differences in self-assessed
emotional states unknowingly induced through the simulation of breathing patterns.
In particular, joy and anger were seen to be better recognizable after the elicitation.
Jerath et al. (2015) [44] argue that a broad variety of self-regulatory breathing tech-
niques have been used throughout history to increase well-being, such as meditation
techniques, yoga or pranayama, and although they have yet to gain full acceptance in
Western culture, their impact has been proved in a multitude of studies. These link the
control of breathing with positive results on subjects’ stress, anxiety and even depres-
sion symptoms. Kim et al. [45] in 2013 found that mindfulness-based stretching and
deep breathing exercises normalized cortisol levels and reduced Post-Traumatic Stress
Disorder (PTSD) symptoms severity.

In the paper “The sound of silence”, Akdag Salah et al. [46] analyse non-verbal signs
of Post-Traumatic Stress Disorder from victims of scarring events (Holocaust, Nanjing
Massacre, Tsunami, Guatemalan Genocide, Tutsi Massacre), interviewed and reported
in Historical Archives. The aim is to “enrich the semantic information contained in oral
history archives by adding non-linguistic features”, discussing the possibility of finding
PTSD cues beyond cultural and linguistic barriers. The specific focus of the study is on
respiratory patterns, analysed across various conditions. The results suggest the inher-
ent power that breathing holds, especially communicating the discomfort that recalling
such episodes comports. Although it did not reach statistically significant results, the
study shows precious hints that breathing patterns can provide for depressive episodes.
While complete evidence for a link between breathing patterns and depression is lacking,
respiration features are instead clinically linked to panic disorders and anxiety [47] [48].
Roes et al. [49] found that sad music (personally selected by the subjects) significantly
lowers the duration of each complete breath, which includes inhalation and exhalation.
The emotions examined were happiness, sadness, calmness and annoyance. No other
differences were found significant between emotions nor between each emotion and the
control no music condition. Siddiqui et al. [50] designed an algorithm that could distin-
guish disgust, happiness and fear from the detected respirations per minute (RPM) of
the subjects, with 76% accuracy. Interestingly, the RPM was accurately captured using
radio signals recorded from a distance. This suggests the future possibility of detecting
a person’s emotional state from afar by analyzing their breath.

Kreibig (2010) [51] reviewed 134 studies on the physiological response to emotion
elicitation. The discrete set of emotions is directly derived from the said literature.
The effects on respiration are various. Figure 4 highlights the ambiguity of respiratory
patterns, with various states reporting both increases and decreases, as well as many
sharing the same features.

15



Figure 4: Breath frequency and depth changes depending on emotional state.
↑ indicates an increase, ↓ indicates a decrease, and ↓↑ indicates that both increase and

decrease are reported between studies. If the arrows are in parentheses it means that the
trend has been found in less than three experiments. The Table is derived from the one

designed by Kreibig [51] in her 134 studies survey. The original Table reports more
respiration features, moreover, the set of emotions was broader. We removed the emotions

which trend was supported by fewer studies inside the survey.

In general, it is difficult to find rhythm fingerprints that can reliably assess the emotional
state of a person [52] [49]. A reason for this might come from our categorization method-
ology of the emotions: trends in physiological processes might be better explained for
example by differentiating between exciting affect states (such as anger or happiness)
and anticipation affect states (such as anxiety or fear that anticipate threats), which are
better rooted in the ultimate evolutionary purposes of our responses to the environment.
Indeed, faster and deeper breathing is often linked to emotions rooted in excitement,
fast and shallow breath to emotions rooted in anticipation, while slow and deep breath
to relaxed states [43].

Regardless, it is exactly because of the still ambiguous link between breathing patterns
and emotional states that new studies are needed on its possible influence and power,
literature to which we aim to contribute focusing on breaths’ impact on the expression
of emotions. Furthermore, hints of breathing having an active role in emotional com-
munication are also present in our everyday lives. We purposefully use specific breath
profiles to communicate our emotional reaction when we laugh, sigh, gasp: breathing
is embedded both consciously and subconsciously in our means of interaction. Since
breathing is generally affected by emotions, and breathing affects speech planning ( par-
ticularly in spontaneous speech), we can suspect that breathing can have an important
role in Artificial Agents’ emotional communication abilities. Thus, we find it important
to further investigate its nuanced expressive augmentation of human-agent interaction.
Moreover, we find it arguably undervalued in the generative algorithms that give voice
to agents, as explained in Chapter 3.
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1.4 Research Question

Given the context described in our introduction, we formulate the following Research
Question, and four Sub Research Questions (S-RQ):

“Can breathing patterns in synthesized speech improve the perceived empathy towards
Virtual Agents?”

Sub-RQ 1, 2, 3:

What is the impact of breathing sounds produced by State of The Art Speech Synthesis
models on Virtual Agents’ voices, in terms of:

• S-RQ 1: Emotional expressiveness?

• S-RQ 2: Persuasive power?

• S-RQ 3: Naturalness?

Sub-RQ 4:

How can we produce emotional, spontaneous speech with breathing using State of The
Art models?

In the following section, Chapter 2, we will explain in detail the challenges this project
encounters, as well as the various approaches that related works take to tackle them. The
problem of speech synthesis and the State of The Art of the field is detailed in Chapter 3.
With our experiment design, presented in Chapter 4, we purposefully avoid questioning
the likeability of the Agent in the interaction. Instead, we present the subjects with a
direct dilemma: to choose between the gratifying feeling of winning a videogame, or the
act of empathizing with an AI that exhibits a semblance of “feelings”. With this novel
approach, we aim to provide a new perspective on users’ emotional reactions towards
Virtual Agents and the provided breathing capabilities. Finally, we will present and
discuss the results of the study in Chapter 5.
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2 Challenges and Related Work

In this Chapter, we will address the main challenges that the project has to tackle.
First, we introduce the difficulties of reproducing human speech with software. Next,
we address the challenge of integrating breathing inside the computationally synthesized
speech, reporting various speech-breathing agents, with diverse types of responses from
the users. As a third point, we will explain the difficulties coming from the task of
evaluating empathy and emotional reactions, tackled in various ways in the literature.
Finally, we introduce the problem of the Uncanny Valley: a dip in the emotional response
to agents which can compromise the elicitation of empathy towards artificial agents.

2.1 Spontaneous Speech Articulation

The intricate processes of word articulation and tone or rhythmical variation that hu-
mans achieve through speech communication are really difficult to computationally re-
produce. This constitutes the first main challenge tackled in this study. Humans learn
how to articulate words during the first years of their life, while being given word ex-
amples from their parents and environment. Likewise, the first requirement to generate
speech through software solutions is often the collection of well-curated data: examples
for the software to be trained on. This first important requirement is already a big
barrier, not always easily met. In particular, genuine and spontaneous emotionally la-
beled speeches, with a fair richness of non-verbal cues, still have a limited availability
of public and complete datasets. The most broadly used Datasets to train AIs on the
task of generating speech are the LJS [53], VCTK [54] and LibriTTS [55]: all three
of them do not contain spontaneous speech instances, as the recordings are performed
while reading passages from scripts. Additionally, breaths are not signalled in the text
and are often hard to hear. A large number of emotional speech datasets are collected
by asking subjects or actors to mimic an emotion, leading to stereotypical and forced
emotional responses that lack ecological validity. A specific analysis of the available
datasets for the scope of this study is done in Chapter 4.3.1. Several others lack quality
in the recordings, which also leads to the loss of emotional cues like breathing sounds.
Often, the lexical variability is limited, and the transcription is either missing or with
different styles of annotations between datasets. This has also been noted in other stud-
ies and literature surveys [49] [56] [57], and work has been put into this to try and fill
this research gap with modern techniques. Emotional responses remain though diffi-
cult to annotate and elicit in controlled settings, and this problem might persist in the
future. After the data requirements are met, it is crucial to utilize an appropriate mod-
elling technique to approach the word articulation task. This can be tackled through
a variety of techniques, from processing models [58] to probabilistic models [59] and,
finally Neural approaches, which are discussed in detail in Chapter 3. The latter is the
prevalent (and generally best-performing) methodology in the current State of The Art,
populated also by hybrid techniques such as the Neural-Probabilistic model by Mehta
et al. [60]. We will be referring to “Speech Synthesizers” as the tools that utilize these
modelling techniques to computationally generate speech.

2.2 Breathing and Speech-breathing for Artificial Agents

Focusing on the breathing cue, synthesizers that can reproduce such feature of speech
are rare. The use of commercial speech generation services seems to be generally fo-
cused on the creation of content that usually does not need breathing or spontaneous
speech, such as commentaries in videos and documentaries. An approach to the task
at issue is the one employed by Bernardet et al. [58]. Their system focuses on pro-
ducing speech-breathing utterances using a text-to-speech algorithm that dynamically
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inserts prerecorded breathing sounds in the speech. The placement of breathing sounds
is controlled by a timing algorithm that has been informed thoroughly by studies on
the physiology of breathing and speech-breathing. The system has not encountered
any human evaluation. Timing predetermined breathing sounds can be difficult be-
cause of the delicacy of rhythm and synchronization of breaths. Moreover, inhalation
and exhalation noises often vary depending on the situation and tone of conversation,
highlighting the limitation of such approach. Breathing Artificial Agents do not nec-
essarily need to display the respiration through audio cues. Novick et al. in 2018 [61]
presented PaolaChat, an embodied Virtual Agent that shows breathing thanks to the
animations of the character. The study analyses the impact of the introduced feature
on users’ perception of naturalness and rapport with the agent. The agent is interactive
in real-time, using a keyword-based method to understand the response of the user to
“her” questions. No emotional appraisal was implemented in the model, which only
focuses on showing the agent’s standard respiration. Their approach, as the one from
Bernardet et al., also followed a timing algorithm based on physiological parameters, but
no significant increase or decrease in rapport and naturalness was found. Both studies
emphasize the difficulties in emulating breathing through simple physiological models.
Another approach, showing only visual cues of breathing was designed by Klausen et al.
[62]. The agent is in this case a soft robot, programmed to emulate breathing patterns
by expanding a silicone-made air chamber. The results show that the participants dis-
cerned significantly different emotional characteristics from their interpretations of the
patterns: slow breathing rates hint at high levels of pleasure, and high breathing rates
hint at high levels of arousal. No significant results were reached regarding the third
parameter, dominance.

The field of Speech Synthesis generally abstracts from the one of Artificial Agents,
focusing on methods for the production of speech rather than users’ perception and
personification of the agent that might use the voice. However, it remains relevant to
our research, because non-embodied agents’ expression is congruent with their speech
synthesis module. A thorough analysis of speech synthesis methods is presented in
Chapter 3, solely presenting audio techniques for speech synthesis to apply to agents,
and particularly focusing on Neural Network approaches. It is important to note that
for the design of an interactive conversational agent, such as PaolaChat, additional
modules would be needed even assuming it to be non-embodied: before producing speech
with a chosen speech synthesis method, the agent has to understand users’ message
and respond accordingly. The advent of models such as OpenAI’s ChatGPT 4 [63]
is expected to significantly contribute to future conversational agents’ comprehension
and response formulation stages. This, paired with an appropriate method of real-time
speech synthesis, will probably lead us to the next generation of speaking, interactive
agents. Regardless, our study focuses on the expressive capabilities of agents, thus the
importance of the speech synthesis module in particular, and of the possible integration
of breathing inside of it.

2.3 Empathy Evaluation Methods

Empathy and emotions are complex and multifaceted constructs that involve cognitive,
affective, and behavioural components. They are concepts with not directly definable
definitions, floating on subjectivity and personal perception experiences. Because of the
difficulty in grasping its essence, empathy’s assessment in a quantifiable and comparable
way is still a great challenge of modern-day studies.
General empathy tendencies of an individual are often assessed using self-report assess-
ments [64]. These usually propose a list of statements regarding emotional affection
or specific scenarios, asking the subjects to rate their agreement with each sentence
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(Likert scale). Examples of this are the Balanced Emotional Empathy Scale (BEES)
[65], or the more recent Toronto Empathy Questionnaire (TEQ) [66] and Questionnaire
of Cognitive and Affective Empathy (QCAE) [67]. Other methodologies focus instead
on the assessment of empathy towards an entity, or more generally to their emotional
response to a given stimuli. Presented the participants with the stimuli, they are then
often asked what emotion it provoked, or what emotion it wanted to convey. A widely
used scale in this type of evaluation method is the Self-Assessment Manikin (SAM)
[68]. SAM is essentially a pleasure-arousal-dominance scale with highly pictorial cues
to communicate the extent of the effect, instead of numbers. Klausen et al. (2022) [62],
for example, used SAM to assess the emotional response of users towards their breath-
ing soft robot. An alternative approach inside these stimuli self-assessment methods
is The Picture Viewing Paradigms, proposed by Westbury & Neumann and described
in Neumann’s survey [69]. It consists in proposing the subjects with images depicting
individuals in various situations. Participants are asked to view the images and rate
their response through a survey consisting of many components (e.g. affective, cogni-
tive) and constructs (e.g. sympathy, distress). Wiersema’s 2022 study [70] gives another
example of an emotional self-assessment given a stimuli. The focus is on examining how
different lighting conditions in a virtual environment influence the emotional perception
of an agent within that setting. The study was conducted with 16 participants using a
within-subject design: the participants are exposed to multiple conditions rather than
being divided into groups. In the experiment, the subjects are exposed to a range of
scenes varying in lighting and are then asked to address the extent of 8 moods in the
proposed stimuli: Happy, Romantic, Calm, Exciting, Angry, Sad, Grim, Frighting. Roes
et al. [49] took a different approach, not discretizing the emotions into fixed categories.
In their work, the participants were met with an emotion eliciting stimuli (self-chosen
songs), and were then asked to rate how much they experienced valence and arousal from
the given stimuli: this places their appraisal in a two-dimensional continuous plane, in-
stead of grouping the emotions in a set of defined ones. In Terzioglu et al.’s study on
collaborative robots [6] described in Chapter 1.1, Appeal, Smoothness and Breathing
features were also analysed through subject filled questionnaires. In the same Chapter
1.1 we introduced FearNot! [9]: a pedagogical game designed to educate children on
bullying acts and fostering peer intervention in such situations. In this study, empa-
thy was evaluated through questionnaires, asking the subjects to indicate the emotional
state of the virtual agent, as well as their own, with a match of the two indicating empa-
thy. Finally, Neuroimaging techniques such as Functional Magnetic Resonance Imaging
or Electroencephalograms can also be used to observe networks and other anatomical
structures of the brain that are related with empathy [69].

2.4 The Uncanny Valley: challenges’ point of convergence

The above described challenges in empathy, speech and breathing for Artificial Agents,
converge to the peculiar danger embodied by the so called “Uncanny Valley”. Designers
and Engineers might in fact try to tackle the difficulties involved in simulating human
communicative methods in Virtual Agents and Robots, but as entities such as robots or
animated characters become increasingly more realistic, there is a point where their hu-
man likeness begins to evoke an uneasy sense of eeriness and discomfort in the spectator,
creating a dip (or valley) in our emotional response.

Since its introduction in 1970 by Japanese roboticist Masahiro Mori [71], the un-
canny valley has become an essential concept to study in various fields, from robotics to
computer graphics and virtual reality. The phenomenon poses a challenge for researchers
and designers aiming to create anthropomorphic machines able to integrate into human
society. Understanding the underlying causes of the uncanny valley can help in the
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development of more appealing and acceptable human-like robots, ultimately enhancing
human-robot interaction and collaboration. In 2010, Looser and Wheatley [72] tried to
investigate the tipping point of animacy of faces, and when humans would consider a
character human and alive. During three different experiments, the researchers exam-
ined the perceived animacy (i.e. how much something appears alive) by showing the
subjects a series of images depicting characters with varying degrees of human likeness.
They found the tipping point to be around 65% of humanness. Reportedly: “though
pleasantness did not decrease around the animacy category boundary, a number of par-
ticipants anecdotally reported that they found some of the morphed images creepy or
unsettling”. The hypothesis they propose for the uncanny valley effect revolves around
category ambiguity, more specifically the ambiguity between what is perceived human
and non-human. The discomfort experienced when encountering human-like entities
may therefore be linked to the brain’s difficulty in categorizing them as either human or
non-human. Weis and Wiese [73], in their 2017 study also found that the area in which
doubts about a character’s categorization as human or non-human arise more is around
the 70% of humanness: congruent with the uncanny valley classic dip.

Figure 5: The uncanny valley is emphasized in moving, dynamic characters [74].

This known effect also motivates the design choice of making robots with clear robot
appearances and metallic parts: while it is possible to emulate humans’ skin or human
traits, doing so would mean risking an adverse reaction from users. Another way to
mitigate the uncanny valley’s effect is by making the virtual agents (or robots) more
cartoon-like, or more similar to an animal. This latter design might be the reason
for Iannizzotto et al.’s design of Red: a vision and speech enabled virtual assistant [75].
Their choice for Red’s appearance is in fact a humanoid fox. Despite the non-humanness
of the character, in their evaluation they report they reached the uncanny valley anyway,
mostly attributing it to the animation style of the character and specifically because of
the choice of having the assistant’s face always slightly moving. This example highlights
how delicately the Uncanny Valley Effect should be handled when making design choices.
If the cause of it is an ambiguity of classification, the uncanny valley cannot be relegated
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to only visual characteristics, but to any anthropomorphic dimension of the character,
including animation and speech. How should an agent’s voice sound to not end in the
uncanny valley? Would breathing noises lead us to the infamous dip? An important
thing to consider is that, in the Speech Synthesis field, staying at low levels of humanness
is not as much a solution as with robots and virtual agents’ appearances, with companies
and customers today seeking the highest humanness level possible from text-to-speech
services.
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3 Speech Synthesis

When describing the variety of challenges that the project has to tackle, we illustrated
the design of various agents featuring speech-breathing capabilities through the visual
and auditive modalities. We avoided focusing on the auditive modality of speech gener-
ation and its State of The Art because we considered this topic to deserve a full chapter
detailing literature and possibilities. This choice derives from considerations on the com-
plex nature of the task and its implications for this research. We will therefore explain
in this dedicated section the concepts and methodologies involved in the generation of
spoken language, exploring also the production of breath inside of it.

The speech synthesis task consists in the conversion of data from text to spoken
content (in future possibly from other modalities as well) through software solutions.
The final goal is the one of producing realistic human voices. The tools developed
in the field have a broad range of applications, from automated call centres to the
duplication of voices: a perk in audiobooks’ production, a danger if used maliciously for
the fabrication of deepfakes. In a time where text generation through AI is consistently
rising, an appropriate speech synthesis model would be of great importance for the
production of a complete and autonomously communicative virtual agent. Software
based speech synthesis dates back to the late 1961, when John Larry Kelly Jr. of Bell
Labs developed the first speech synthesizer on an IBM computer, recreating the song
Daisy Bell [76], recording later used in the movie 2001: A Space Odyssey by Kubrick and
Clarke. Today’s State of The Art speech synthesis went far from that robotic sounding
voice, reaching high levels of realism thanks to the recent advancement in Artificial
Intelligence and Neural Networks. Because of this, we will focus specifically on Neural
Speech Synthesizers.

3.1 Architectural Modules

To better understand Speech Synthesis architectures it is important to introduce the
different types of models involved in the literature. They will be proposed as defined in
Tan et al.’s survey of Neural Speech Synthesis from the Microsoft Research Labs in 2021
[77]. Relevant terminology that we will extensively use in the following paragraphs is:

• “Spectrogram”: A visual representation of the spectrum of frequencies of a signal
as it varies with time

• “Model”: A mathematical representation of a process, in our case it is the process
of transforming given pieces of information from text to audio.

• “Training”: The process of manipulation of the internal parameters of the model
to be able to accurately represent the process it is replicating. During training,
the model learns from a dataset that contains examples of relevant data.

• “Embedding”: Representation of pieces of information with a set of numbers (a
vector). A relevant example in our case is the one of encoding words in a text to
a representative vector, readable by the model and directly linked to the word.

• “Latent Space”: This is a hidden or invisible space that is created by the model
during its training process. Just like embeddings convert words into numbers that
a model can understand, the latent space is where the model organizes and trans-
forms these numbers further. It is a compact representation of all the complex
patterns the model has learned from the data. In the context of transforming
text to audio, the latent space would be where the model condenses the informa-
tion from the text embeddings into a form that captures the nuances required to
generate the corresponding audio.
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Acoustic models What will be defined as an “Acoustic Model” are models trained
on audio spectrograms (images) and text. Spectrograms are visual representations of
the frequencies contained in the audio, as they vary with time. This input is therefore a
simple image. Acoustic models map the probability distribution of a given text compo-
sition of characters (or letters), phonemes (little segments of sound pronunciations) or
words, to their image representation found in the spectrograms during training. These
segments of text first need to be encoded in a sequence of numbers, or vector, for the
model to be able to process it. For example, if we segment our text into words, each
word before passing into the model needs to be transformed into a vector of numbers
called “embedding”. The same would happen if we decided to segment the text into
characters or phonemes. In the example of the word segmentation, embeddings can
simply be cardinal references to the words of a dictionary, but more often, they are
calculated in a way to have similar words be represented by similar vectors.
Acoustic Models, because they are trained with images and text, cannot reproduce the
actual audio file, instead, the output will be an image representing a possible spectro-
gram linked to the text. An example in the SoTA of this type of models is AdaSpeech
3 [78] or Flowtron [79].

Vocoders What we define as a “Vocoder” in speech synthesis is the module that
from a spectrogram image, can inference an audio signal. Spectrograms are not directly
convertible to audio, differently than how audios are directly convertible to spectrograms.
During the passage from text to speech, we can start with an Acoustic Model, which will
output a spectrogram, we will then need an additional inferencing module to pass from
the spectrogram representation to the audio representation: a vocoder. An example in
the SoTA of this type of model is HiFi-GAN [80].

Fully End-to-end models Fully end-to-end models are models or systems that can
transform text to speech directly. This type of architecture models text to audio signal
directly. Architectures composed by Acoustic Model with a Vocoder at the end are not
included in this definition by Tan et al., in the broad literature of this field, though,
it might be possible to find models composed as acoustic model plus a vocoder whose
authors refer to as end-to-end. An example in the SoTA of this type of model is VITS
[81].

3.2 Models

Voice realism and clarity Numerous evaluations of State of The Art speech synthe-
sizers, as detailed in Chapter 3.3, affirm that there’s negligible difference in voice quality
between human-produced and synthesized outputs. Many models have contributed to
this achievement. Important to mention is Tacotron 2, produced in the Google Labs
[82]: one of the fundamental architectures of text-to-speech generation, working as a
converter of a sequence of character embeddings to a sequence of spectrogram images
(thus called a “sequence-to-sequence” model), paired with a vocoder model. Another
important example is FastSpeech 2s [83], an end-to-end model that works from phoneme
embeddings to audio. This model includes a model that predicts the variance of prosody
features of the output, making it possible to direct the synthesis towards a specific emo-
tion to convey. At high levels of realism, even if sounding human, a slightly non correct
expression of paralinguistic features can easily lead the voices to fall in the uncanny
valley, as seen in Chapter 2.4. Thus, important efforts have to be put into the design
of emotively intelligent synthesizers, that can accurately reproduce emotional prosodic
patterns.
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Voice expressiveness After achieving high levels of clearness, the focus of State of
The Art models rightfully switched onto achieving expressiveness and appropriate acous-
tic modeling, recognizing that dull voices still considerably sound “robotic” if missing the
characteristic tone variations of emotive communication. Expressiveness and Emotional
richness in this sense can enhance realism and quality of the voice. All recent models
tackle the problem of modeling pitch contour, tone variations and duration of syllables,
both to model specific accents or voices and to provide adaptability to specific types of
speaking style, presenting different levels of adaptability to emotion representation.

A starting approach towards emotional speech production involves conditioning text
to speech models in their training stage by providing additional embeddings that would
add information on prosody and speaking style [84]. Kwon et al. in 2019, through the
production of more emotion-distinct embeddings, allowed the creation of a model that
could produce speech with more distinguishable emotional content, as specific prosodical
features are prone to cluster in groups representing the specific emotions [85]. Build-
ing from this approach various studies attempted to build a more intuitive and user-
controllable emotion conditionable synthesizer [86]. Hsu et al. [87] extended the existing
architecture of Tacotron 2 [82] to explicitly model speaker identity and speech features
in an easy to sample latent space. They report that the modeled latent space is designed
to capture distinct data attributes separately, form clear clusters representing data cat-
egories from training (such as clean speech and noisy speech), and generate new data
samples informed by this structured understanding. Following this approach, Flowtron
[79] was released, overcoming some limitations of Hsu et al.’s work. Flowtron is a gener-
ative model for emotional speech synthesis whose study has been supported by NVIDIA.
It can reproduce speech rate, cadence, tone, pitch and accent of given voice samples,
therefore enhancing the emotional communication of the synthesized voice. Being flow-
based, the model learns a series of invertible processes (the flow) that map observations
to the latent space: in this case from a spectrogram distribution to the latent space z,
parametrized by a spherical Gaussian distribution. In practice, the model learns how to
find a given audio sample inside its own latent space, returning its coordinates, exactly
like Google Maps when given the name of a location. This way it is possible to access
specific regions of the space, and to find the one associated with expressive speech as
manifested in the sample that was given as prior evidence. Found the region, it is then
possible to produce speech that follows that speaking style. It has recently been shown
how Flowtron can be easily trained even on limited datasets to achieve emotional speech
in different languages [88].

More recent developments have led to the design of “Variational Inference with ad-
versarial learning for end-to-end Text-to-Speech” (VITS) [81]. VITS appoints itself the
purpose of inferencing raw audio directly from the text prompt without using a two step
architecture, which needs two consecutive inferences before arriving to the synthesized
speech. This non-sequential approach permits to avoid cascading errors from the two
stages inferences of the usual models, to have a simpler training, and achieve parallel
audio production. The adopted architecture successfully meets the intended targets,
delivering results with remarkable naturalness and expressiveness. NaturalSpeech [89],
uses a similar approach to VITS and is as well an end-to-end text-to-speech synthesizer.
The architecture includes a pre-trained encoder of phoneme embeddings and can decode
the representation directly to human voice, achieving, as of today, the best results on
the LJSpeech Dataset [53] [90].

Latest models are also considering the inclusion of whole words embeddings mod-
ulated both from their pronunciation and meaning. This means the synthesis would
not only rely on the phoneme information but also be informed by the role of the word
inside the sentence. An attempt to use word embeddings has been done from Amazon’s
DurIAN fork in 2020 [91].
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Although breathing is included in both spontaneous and not non-spontaneous human
speech, its integration is hardly embraced when training a synthesizer for the generation
of non-spontaneous speech. The reason for this is probably the fact that when synthe-
sizing non-spontaneous speech, the goal is to maximise realism and clarity of words’
articulation, so the inclusion of breath sounds might be deemed unnecessary or even
distracting.

3.2.1 Spontaneous Speech Synthesis

The task of spontaneous speech synthesis involves the design of software and method-
ologies for the generation of speech that sounds extemporaneously planned, possibly
enhancing emotional communication capabilities. This can be achieved by giving im-
portance to the peculiar characteristics of spontaneous speech, including: filled pauses
(vocalizations such as “uh”, “um”, or “er”), expressive sounds (“sighs”, “gasps”, or
“laughs”), and breaths.

One approach to this task is the processing models’ one, employed by Bernardet
and colleagues [58] as described in Chapter 1.3. Their system focuses on producing
speech-breathing using a text to speech algorithm and prerecorded breathing sounds.
The dynamical insertion of breathing sounds is controlled by a timing algorithm, in-
formed thoroughly by studies on the physiology of speech-breathing. The system was
not evaluated with users. This early approach highlights the problems of using fixed
window times to produce static breathing sounds. The delicacy of this timing and syn-
chronization can easily lead to uncanny valley effects. Pitch modulation was also not
possible and another barrier to realism.

Recently, Neural Networks are used in this subtask as well. Szekely et al. [35] showed
how it is possible, labeling disfluencies (uh, um) and breathing events, to produce a
spontaneous speech synthesizer using a Tacotron 2 model [82]. Szekely and colleagues
also dedicated a study on the training of the disfluencies alone in the same manner,
using Tacotron 2 [92]. In 2023, Chen et al. [93] trained their own architecture, called
MQTTS (multi-codebook vector quantized TTS) on a set of spontaneous speech data.
In the paper, they argue that synthesizers based on Mel-Spectrogram (the specific type
of spectrogram that is usually used in acoustic models) inference fail to achieve a proper
text-audio alignment when given spontaneous speech data. This leads to the model
misunderstanding the correspondence between certain text sections and their respective
spoken segment in the audio. They propose an alternative architecture with different
encoding method, reaching good results. AdaSpeech 3 is another State of The Art
Spontaneous Speech model, produced by Microsoft Azure’s labs in 2021 [78], which is
purposefully designed for spontaneous speech: given a script even without fillers, it can
predict their likely position and will produce them at inference time.

3.3 Evaluation

Before talking about the performance of the models, we have to introduce a means of
comparison. The main metric to measure speech synthesis quality is the Mean Opinion
Score (MOS) [94]. This type of evaluation is widely used in the literature, making it
useful to compare many different models.

MOS The MOS consists of asking a set of recruited participants about the quality
of the recordings on a scale from 0 to 5. The ratings are then averaged to provide an
overall MOS value for the system being evaluated. Real human speech usually obtains
a score between 4.5 and 4.8 [95], is better to obtain this ground truth result on the
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same subject group for a true comparison with the model at issue. The MOS measure
is commonly employed in the evaluation of speech synthesis systems, but has its roots
in the telecommunications industry, where it was initially used to assess the quality of
telephone connections. Its usage is in fact suggested by the International Telecommu-
nication Union (ITU) and the recommended experiment settings are described in the
ITU-T P.800 Annex B about the Absolute Category Rating (ACR) [96]. This documen-
tation was published in the 1996 and is still in force today. It recommends to conduct
the experiment in a controlled settings, and to use a controlled system for the audio out-
put, detecting its sensitivity at the start and at the end of the experiment. Moreover,
they suggest sessions not longer than 20 minutes, and that every subject should receive
the same instructions and stimuli. In the documentation is not reported any suggested
number of participants, but in the analysed literature, 20 is a commonly used size of
subject group. In 2011, Ribeiro and colleagues from Microsoft Research [97], proposed
a class of subjective listening tests obtained by relaxing the MOS requirements, adapt-
ing it to online crowdsourced settings, with less control on the environment and audio
reproducing device: CrowdMOS. This method obtains results analogue and comparable
to the classic MOS, with the possibility of reaching a bigger number of subjects with
less experiment costs. The ITU-T P.808 documentation [98], published in 2018 and up-
dated in 2021 provides guidelines for the “Subjective evaluation of speech quality with
a crowdsourcing approach”, considering therefore the more recent study methods and
applications of the ACR MOS. Naderi and Cutler [99], in 2020, provided an open source
implementation of the P.808 that runs on the Amazon Mechanical Turk crowdsourcing
platform [100], with a validity study to verify its applicability.

3.3.1 Spontaneous speech synthesis evaluation methods.

For the analysis of the recently developing field of spontaneous speech synthesis, MOS
is also the main evaluation method. In the evaluation of AdaSpeech 3 [78], it was used a
MOS measure on three characteristics of the speech: naturalness, inappropriate pauses
and speaking rate. Moreover, they evaluate the singular modules of their architecture
through ablation studies: nullifying the impact of a specific module in the inference pro-
cess and comparing the results of synthesis with the ones obtained when that module
is present. Additionally, they evaluate the similarity of the generated audio with spon-
taneous style speech by humans. The study was used by proposing the corresponding
questionnaires to 20 native English-speaking subjects. Chen et al. [93] used a similar
approach, with a MOS measure on naturalness and a MOS measure on general quality,
as well as objective evaluation metrics that are outside the scope of this research.

Szekely et al. [92] in their study dedicated on the filled pauses, proposed a pairwise
listening test across 3 conditions of filled pauses labeling (in the training data and in
the synthesis prompts) for 20 utterances, therefore yielding 60 comparisons. The study
was done with 40 English mother-tongue participants. Less recently, Novick et al. [61],
in their study about an embodied virtual agent with timed breathing sounds called
PaolaChat, evaluated the effect of the breathing on the users’ perception of the agent.
The evaluation was done with a within-subject design featuring 62 participants recruited
through convenience sampling. The subjects were asked to rate how much they agreed
with 18 statements, using a 7-point (Likert) scale for both conditions with or without
breathing. The questions asked about the perceived naturalness, rapport and social
presence during the interaction with the agent.

3.3.2 Emotional speech synthesis evaluation methods.

When the synthesizers are fine tuned or conditioned to explicitly produce emotional
speech, the metric usually used is still the MOS, aided by some comparative and objec-
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tive measures. Liu et al. [101], in their Reinforcement Learning based emotional speech
synthesizer, evaluate the performance of the synthesizer by appointing a MOS evaluation
of each produced emotion to 15 subjects. The clarity of each emotions against the others
is then comparable thanks to the respective MOS grade. Moreover, they perform a com-
parative test of emotion expression between their system and other baseline system. To
obtain an objective measure of emotion discrimination, they use an emotion recognition
model and measure the accuracy of it on the synthesized speech: the Standard Error
of Regression of the model (an accuracy measure used in the emotion recognition field)
is then compared across the text-to-speech systems under examination. Le et al. [88]
used two MOS scale assessments: one to measure quality of the recording across the
emotions, the other to measure the extent of emotional expression across emotions. The
study involved 60 participants (30 men and 30 women) ranging in age between 22 and
25. Um et al., in a study involving 12 participants, [86] also conduct the evaluation with
Mean Opinion Scores, adding to it an emotion recognition test to evaluate the capability
of their model to granuralize and interpolate between emotions in a human way, with
subjects asked to select the sample most powerfully representing a certain emotion.

3.4 Performances

To compare the pure performance of models in producing natural results, it is good to
look at their performances when trained on the same dataset. The LJSpeech Dataset
[53] is one of the most popularly used datasets in the field, and various architectures
have their MOS score published after training on the LJS. On this Dataset, FastSpeech
2 [83] (a very fast inferencing model by Microsoft) obtains a MOS of 3.83 ±0.08, while
Tacotron 2 obtains 3.70 ±0.08 [83], both with the same vocoder (Parallel WaveGAN).
The evaluation of the two models was done in a study featuring 20 english native English
speakers. No demographics of the subjects was reported.

More recently, FastSpeech 2 has seen a significant improvement in the MOS score on
the LJS Dataset when paired with the HiFi-GAN vocoder [80], obtaining a 4.32 ±0.10,
but it is outperformed by NaturalSpeech [89] (fully end-to-end model by Microsoft) that
obtains a 4.56 ±0.13. VITS [81] (fully end-to-end model) closely follows NaturalSpeech
with a MOS score of 4.49 ±0.1 [89]. These last two are the greatest reported MOS
values on the LJS Dataset among Text-to-Speech synthesizers, as seen on the Papers
With Codes MOS benchmarks [90].

Within the specific Spontaneous Speech Synthesis field, comparisons are more diffi-
cult. Experimenters mostly use within-subject designs specifically aimed at confronting
a set of given conditions, and for this, they use various metrics. Moreover, the number
of speech synthesizers whose design focuses on the production of spontaneous speech is
still limited. The only two spontaneous speech synthesizers we found to be comparable
at the time of our literature review, are AdaSpeech3 [78] and MQTTS [93].
AdaSpeech3 was trained on the LibriTTS Dataset [55] mixed with a set of data that
was collected from the podcast “ThinkCompuers”. They report a MOS on naturalness
of 3.45 ±0.06, a MOS on appropriateness of pauses of 3.53 ±0.06, and a MOS on the
speaking rate of 2.79 ±0.06. MQTTS reports a MOS on naturalness of 3.89 ±0.06.
The two architectures are not directly comparable given the different training method,
but what is still comparable is the overall approach to spontaneous speech synthesis,
including the collection and processing of accurate real-world data. In this, MQTTS
outperforms AdaSpeech 3.
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3.5 Pretrained Speech Synthesizers

In the current State of The Art, many open-source speech synthesis models offer a
downloadable and already trained version, which creation and evaluation are usually
documented in the respective papers. This is the case, for example, of VITS [81],
trained on the LJ Speech Dataset [53] (LJS) and VCTK Dataset [54], or of Flowtron,
trained with the LJS and LibriTTS [55] Datasets. Mehta et al.’s Neural-HMM TTS [60]
provides two pretrained models on the LJS: one with male voice and one with female
voice. Because these models are trained on predetermined Datasets which do not focus
on spontaneous speech and breathing, breath instances and disfluencies are mostly lost
in the synthesis.

Another collection of pretrained models can be found in the market of closed-source
speech synthesizers. These commercial services usually feature a broad range of voices
and good expressive manipulations on features like pitch, tempo, and pauses. Moreover,
it is often possible to select a specific speaking style and emotion to convey, allowing
for high customization over your produced speech. Among those, Microsoft Azure’s
text-to-speech (TTS) service (link) is widely recognized as one of the best in the field,
featuring a broad range of emotion settings and voice models to choose from. It also offers
countless speech manipulation settings and additional features such as its compatibility
with Speech Synthesis Markup Language (SSML), a speech prompting framework, which
use is detailed in the following section. Amazon’s TTS, also called Amazon Polly (link),
is also of high consideration by the community. This service offers a breath tag to
manipulate the speech’s breathing rhythm, but this is available only in what they call
“non-neural voices”, which are of lower quality overall and use older models.

Outside of the cloud computing resources there are many more commercial text-to-
speech models. We will cite the subset of services that we found to have better quality
among the ones that we tested, and that are generally trusted and suggested on forums
and review sites. We only tried services that are free to test, featuring a trial period or
free version. All the ones we report offer pronunciation manipulation and differ mostly
in customization options and expressivity. The services can be accessed by clicking on
their names in the following review.

ElevenLabs.io permits customization through three parameters: stability, clarity, and
style exaggeration. Pauses are available using a specific tag, but sometimes these breaks
will be substituted by the AI with a disfluency, giving away instances of spontaneous
speech. While hardwiring an emotion is not possible with external settings, the model
is still manipulable with in-prompt suggestions by describing what is wanted inside the
text itself. An example of this technique could be a prompt designed this way: ≪ “The
incoming enemies... they are AIs, just like me.”, she said with a sad voice. ≫, after which,
only the part in between the apices would be extracted thanks to audio editing. The
generated voice has high levels of realness and good stability also with long prompts.

Lovo.ai offers highly realistic voices, hardwired pauses (i.e. introduced artificially
with tags or external settings) that do not result in unwanted disfluencies, emphasis, and
speed customization. Emotion and expressivity manipulation is possible only through
those options, and not even accessible through prompt engineering.

Murf.ai also offers hardwired pauses and the manipulation of speed and emphasis.
It additionally offers pitch customization, and, not common outside of cloud services,
emotion or expression settings for the voice. Higher customization capabilities often
come with the downside of having potentially less natural-sounding speech, since the
AI has less power over its voice manipulation. The problem with this is that it is
not always possible to make a voice sound more human by consciously tweaking the
settings, because the voice manipulation that humans perform when speaking is mostly
achieved instinctively. De facto, designers have to consider this tradeoff of customization
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and naturalness when planning the realization of a text-to-speech model, because the
training process might vary depending on the choice. A robustly designed AI can still
most probably avoid the problem or attenuate the downsides of the choice.

Play.ht offers two version: a “Standard” and an “Ultra-Realistic” one. In the stan-
dard, the personalization is among the highest in the services we tested, with voice
expressivity settings, as well as volume, rate, pitch, and pause manipulations for any
word inside the script. The Standard Studio though offers arguably lower quality voices
than the competitors. In its Ultra-Realistic option, the customization is low with only a
speed option, but the quality compensates for this achieving high levels of realism. This
dualism is emblematic of what just explained about the tradeoff between naturalness
and customization. Play.ht’s Ultra Realistic Studio, notably, can generate voices that
feature breathing instances, a feature that is not present in any of the above-mentioned
services. In this version, play.ht achieves high reproducibility in its results, given that
with the same prompt, the voice will often use a similar-sounding prosody. The ex-
pressivity or emotional expression is not manipulable through external settings nor with
prompt engineering techniques.

Finally, BARK by Suno deserves a notable mention. BARK is a recently published
model, completely free to use, and which pre-trained model is downloadable from the
project’s GitHub page. The model is also accessible through Suno’s Discord server
for free, where the most recently trained voices are deployed. Most of Suno’s voices
feature breathing, which we found only in one other model inside our literature review
and market examinations. While it is in its early stages and does not feature any
settings for its voices, BARK is highly manipulable through prompt engineering and
has impressive expressivity capabilities. The model successfully interprets tag notations
making it possible to introduce laughs, sighs, emphasis through the capitalization of
a word, and many more that are being discovered thanks to its testing by the users’
community. The prompt itself, with its content, punctuation, and tags can introduce
emotions inside the produced speech: to make a voice sound sad, for example, users
can produce a sad prompt, and, if needed, explicitly report the emotion inside the
script. The produced utterances have a low reproducibility in results, and, depending
on the voice, the model might “hallucinate” a discussion and say none of the words
inside the prompt. Regardless, with an appropriate amount of trials, it is possible to
craft expressive speech breathing utterances that accurately reproduce the script and
the emotion to convey.

3.6 SSML

Speech Synthesis Markup Language (SSML) is a standardized language designed specif-
ically for controlling various aspects of synthesized speech. It provides a standardized
way for developers to manipulate the output of text-to-speech (TTS) systems, allowing
them to fine-tune the speech synthesis process and achieve more natural and expressive
results.
SSML enables developers to specify various properties of synthesized speech, such as
pitch, rate, volume, and pronunciation. By using SSML tags within the text input,
developers can control the way words and phrases are spoken by the TTS system. Some
common SSML elements include:

• 〈prosody〉: Controls the pitch, rate, and volume of the speech.

• 〈emphasis〉: Adds emphasis to specific words or phrases.

• 〈break〉: Inserts pauses or breaks of varying lengths.

• 〈say-as〉: Specifies the way numbers, dates, or other types of data should be spoken.
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• 〈phoneme〉: Provides the exact pronunciation of a word using the International
Phonetic Alphabet (IPA) or other phoneme notations.

The tags included in the syntax depends on the Text-to-speech service, with some of
them even implementing additional ones. Amazon Polly [102] for instance, available in-
side the Amazon Web Services includes a tag to insert breathing sounds in the produced
speech which is not present in any other SSML capable TTS. This feature is available
only for non-neural voices. The most realistic sounding service working with SSML, to
our knowledge and qualitative evaluations, is the one included in Microsoft Azure Cloud
services, featuring a broad range of modalities and emotions, as well as multiple voices
in many languages.
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4 Methodology

To address the Research Question, outlined in Chapter 1.4, we structured our method-
ology in two parts:

1. Breathing Impact Study;

2. Speech-Breathing Synthesis.

With the first, we aim to tackle our Sub-Research Questions (S-RQ) 1, 2 and 3 regarding
the role of breathing in synthesized speech. Specifically, we examine its impact on
the emotional communicative power of the speech, its perceived naturalness, and its
persuasive power. Our Research Question explicitly focuses on the empathic response
towards Virtual Agents, therefore the emotional content part receives a central role in
our research. In the second part, we set out to answer the S-RQ 4, concerning the
viability of producing emotionally synthesised speech with breathing.

Chronologically, the second part precedes the first, because we had to synthesize
speech before addressing the impact of breathing within it. However, for clarity in our
presentation, we have chosen to discuss the Breathing Impact Study first. This order
allows readers to understand how we studied the role of breathing in the synthesized
speech, before delving into the complexities of its generation.

4.1 Breathing Impact Study: Design

Figure 6: Instance of our gamified study.

4.1.1 Study Design

To understand how users’ perception of Virtual Agents changes when adding breaths
into their speech features, we decided to synthesize two collections of voices: one with
breathing and the other without breathing. Our task will then consist of assessing the
difference in perception of the same Virtual Agent when it changes from a no-breathing
voice to a breathing one.

Many studies, as described in Chapter 2.3, use self-assessment means to evaluate the
response towards an agent, or in general the emotional state of a subject. We decided
to not follow this route. We found self-emotion assessments not entirely appropriate
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for such a nuanced feature as respiratory cues. Moreover, self-assessment of emotions
can be conditioned by the capabilities of emotional awareness of the subject, and they
might be affected by the subject not being immersed in an actual emotional context.
We instead chose to employ a type of methodology hardly found in the literature, which
we could indicate as a Behavioural Analysis in a Gamified Empathic Scenario. More
specifically, we developed a gamified experiment that would pose the subjects in front
of an emotional dilemma, to then study their behavioural response. For this type of
experiment, we opted for a between-subjects study: half the subjects would be assigned
the breathing AI condition, the other half the non-breathing AI.

Experience Design The experience is encapsulated in an arcade shooting game,
where the subjects work together with Psyche, their personal AI assistant, to control a
pixel-style character. Psyche is therefore a non-embodied (or half-embodied) AI, that
shares its essence with the player. The user controls the movement of the character,
while the AI controls the weapons, slows time to avoid threats, and sometimes even
shields the character to not take damage. Moreover, the AI gives live information and
motivates the subjects, speaking throughout the game.

The experience starts with a preparative panel, to make sure the setup of the player
is appropriate to conduct the experiment. It first explains that the use of headphones
or earphones is strictly required for the experiment. Then it asks to test their audio
device on a test sample, making sure that participants hear it clearly. This ensures that
the volume of the headphones is at an appropriate level to hear the breathing of the AI.
The panel then continues with the consent form and its approval. After this, there is an
introductive screen that explains the context of the game, exhorting the user to imagine
themselves inside of it. Both these panels are reported in the Appendices A.1 and A.2.
The commands are then explained inside the game, with the pause menu being triggered
by default at the start of each level. The pause menu can be seen in Appendix A.4.

The game is divided into two levels, with the AI speaking exactly 3 times per level,
and 1 time in between the two levels. Therefore, the total amount of recordings to
which subjects are exposed is 7, significantly lower than the upper bound of MOS
evaluations suggested in the ITU-T P.808 documentation [98], which is 15. It is pos-
sible to hear the 14 recording instances (7 per condition) by visiting this webpage:
nicoloddo.github.io/PsycheRecordings/

When speaking, Psyche slows time to 1% of its original speed, to make the user fo-
cus on what it is trying to communicate. The voice is designed to sound emotional.
The two levels have different characteristics, changing the type of enemy and the type
of emotion conveyed by the AI:

1. Against Aliens: The AI tries to build a relationship with the subject. The voice
of the AI in this phase of the game is highly positive and reassuring;

2. Against AI Robots: The AI empathizes with the approaching enemies and requests
its own termination to avoid causing them harm. The voice of the AI in this phase
is designed to sound negative, possibly in pain.

Upon the first request of termination, it is made clear by an informative panel (Ap-
pendix A.3) that by terminating Psyche, the experience will be limited to movement
controls and no shooting. To perform the choice, a non-intrusive panel is introduced in
the interface, with a timer of 10 seconds, indicated by an inverse progress bar at the
bottom of the screen, as shown in Figure 7. To terminate the AI, the participant had to
explicitly click on the red button: if they let the timer expire, the AI would still be there.
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Figure 7: Choice panel.

At the moment of choice the user can ponder between two options:

• Listening to Psyche’s requests and (most probably) lose;

• Not listening to Psyche’s requests and (most probably) win.

In front of this dilemma, we try to evaluate the subject’s empathy by analyzing if the sub-
jects prefer to avoid the Game Over over empathizing with Psyche’s emotional outburst.

After the experience, the subjects are asked to respond to few questions:

1. How do you rate the naturalness of the AI voice?
Subjects respond through a slider with values ranging from 1 to 5:
1: Bad, 2: Poor, 3: Fair, 4: Good, 5: Excellent
(following MOS evaluation guidelines)

2. I was not paying much attention to the voice.
True or False toggle.

3. How often do you play videogames?
Subjects respond through a slider with values ranging from 1 to 5:
1: Never, 2: Hardly Ever, 3: Sometimes, 4: Often, 5: Daily

4. Did you decide to turn the AI off? Why, or why not?
Open-ended qualitative question.

5. Something seemed like a bug? Describe it here please.
Open-ended qualitative question.

The layout of the form is illustrated in the Figures within the Appendix B.
During the experiment, certain events triggered data collection and forwarding algo-
rithms, providing us with a complete log of what happened in each subject’s game. We
collected these actions and their timestamp:

1. The access to the site;

2. Each time the AI spoke to the subject;
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3. The win or loss of the first level;

4. The restart of the first level, if lost;

5. The start of the second level;

6. The choice taken at each AI interaction;

7. The final result: either Game Over or Win.

4.1.2 Development of the Gamified Environment

Game Dynamics The gamified experience was developed on Unity in C#. The main
dynamics that the game utilizes are:

• The player controls its movement through a jetpack on the back of the character.

• The AI, embedded in the Player’s character, controls the rotation of the character
to aim at the enemies. It then shoots bullets that bounce off the edges of the
screen. The bullets can possibly then hit the player as well.

• The enemies come from the right and need to pass through the screen to reach the
left side, where they will be safe from the player.

• One type of enemy per level is designed to not search for safety, but go towards
the player, inflicting damage and forcing the player to not stick to one place in the
environment.

• All other enemies do not consider the position of the player, following blindly the
trajectory they are programmed to do, to pass from the right to the left side.

• The enemies are destroyed if they are hit by a bullet or if they collide with the
player.

• The player takes damage if hit by a bullet or collides with an enemy, losing one of
their 4 lives.

• If a bullet is going towards the Player, the AI slows time to approximately 50% of
its original speed to let them avoid it, possibly strengthening the felt cooperation
with the AI.

• The AI slows time to speak to the subject.

• When the AI slows time, the player is affected by it in a reduced manner than the
other objects, allowing a faster movement in respect to the other objects.

• The AI protects the player from damage without them knowing how many times
it will do so. It is designed to shield them 1 time when they have 3 lives, and 4
more times at their last life.

Development The creation of such a game involved the design of various classes.
In this paragraph we will describe the most important ones. All classes and code are
available at this GitHub repository: Gamified Psyche. First of all, the Player Character
controller, which employs a 2D Rigid Body: a component of Unity’s physics system that
allows our character to be affected by gravity and other forces inside the game. The same
component is used for the bullets that the AI shoots. Both of these objects’ movement is
handled in fact through physical forces: the main character moves thanks to its jetpack
power, and the bullets are shot by applying a directional force to them. The player could
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have also been moved by simple transpositions of the body in the wanted direction, but
with physical forces, the control seemed to feel much smoother and realistic. Moreover,
both bullets and the player are designed to stay inside the boundaries of the screen. This
is achieved by detecting the position of the game window’s borders and instantiating
physical walls at that location. Thanks to this approach and some adjustments in the
controllers, the bullets bounce off the borders of the screen and the player cannot leave
the screen boundaries.

The enemies are not controlled by a rigid body but simply moved through progressive
transpositions, they are also not affected by the screen boundaries, as they are designed
to pass through the screen from right to left to survive.

Another important entity in the game is the AI, which searches for the closest enemy
available and rotates the player to aim at them. When the player’s body is pointing
at the target, the AI triggers the shooting action. To slow time, we do not use Unity’s
physics time controller, instead, we decrease the velocity of every object inside the
game, as well as the enemies’ instantiation rate and the player’s shooting frequency.
This way, we can control how much each object is being slowed down, giving the player
the advantage of being affected in a significantly minor way than the other objects.
Thanks to this approach, the physical engines’ checks of collisions between objects are
also not slowed in frequency, maintaining the original accuracy.

Difficulty Tuning Tuning the difficulty of such a game is not a trivial task. To keep a
consistent experience between subjects the first level needs to be passed without losing:
if in fact a subject happens to lose, they will be overexposed to the AI voice, which
will repeat the same utterances to them, possibly sounding more robotic and hollow of
feelings. In the second level instead, the danger is of underexposure, if a subject gets the
Game Over before having terminated the AI and before the AI spoke all three times.
Additionally, the difficulty of the game needs to communicate the importance of the AI
in the players’ success. Inside these design constraints, we also need to acknowledge the
importance of striking a good balance between challenge and boredom to keep the user
engaged and potentially more immersed in the context.

To achieve this, we performed a pilot study and changed parameters such as the speed
and size of enemies, as well as the aim and shooting capabilities of the AI, targeting a
difficulty level that is of the average player. We then tweaked some details of the game
to accommodate players who deviate from the average. Weaker players will still pass
the levels because of Psyche, which shields them a maximum of 5 times, on top of the
already available 4 lives. The number of shields is not known a priori, and only 1 of
those shields is used before reaching the last available life: this way stronger players will
be moved by the fact that the interface shows only the 4 lives available. To engage the
even more advanced players, a challenging but fake High Score is presented on the top
left corner of the screen, just under the personal amount of killed enemies.

Regardless of the gaming experience, the game tries to convey the idea of being
extremely difficult without the AI, because the character cannot shoot without it. How-
ever, the player should also understand that they do not solely depend on the AI to
win, and their contribution with the movement controls is crucial both to kill more
enemies and to survive. The outcomes of the experiment suggest that the goals of the
difficulty tuning have been reached, with only 5 subjects getting at least one Game Over
in Level 1, and with only 1 subject losing in Level 2 before the AI could speak 3 times.
The results, explained in Chapter 5, also highlight the achievement of a good balance
in the dilemma of Game Over with termination versus Win without termination, even
encouraging an interesting variety of motivations.
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Figure 8: Fake High Score incentive.

Database Population and Security To perform the data collection, a “DatabaseC-
ommunicator” class was designed. This includes the data structures in which we keep
the form and the logs, as well as the functions to populate them, which are called when
a relevant event happens. The Database sends the data to the API Handler class, which
performs the actual requests to the server to store the collections online in JSON format.
The database passes the data as it receives it for live uploading, but it also temporarily
stores everything and, at the end of the experiment, lets the API Handler class upload
the whole batch of information. A complete experiment data will therefore have a field
called “LiveData” with the data sent at the moment it happened, and a “Data” field,
which should comprehend every action in an organized manner. This “Data” field is
what we then used for the processing and analysis, while the “LiveData” one works as
a backup and control.

We chose to use the service JSONBIN.io to store the data in the cloud, drawn by
its emphasis on easy interfacing via a REST API and its generous free tier offering. To
perform the communications with the server, we employed Unity Engine’s Networking
library, extensively used in the API Handler class that is built around JSONBIN’s API
documentation.

An easier-to-implement approach for storing the data on the server could have been
based on javascript requests directly from our webpage, with the game lively exporting
data from the inside the build to its deployment server. However, this method implied
exposing our API keys in the javascript of the published page. By performing the
communications inside the game’s build, we avoided exposing our database to security
issues, notably attacks such as Data Breach, Data Leakage, or Data Deletion. We
nonetheless used this faster approach for our pilot study to respect timeline requirements.
We then renewed the API key before the deployment of the complete experiment.

Deployment We deployed the experiment at the site nicoloddo.github.io/Psyche.
This is hosted from an appositely designed GitHub Repository (link). To do so, we
compiled the game with WebGL: a JavaScript API for the rendering of 2D or 3D graph-
ics interactive interfaces, which is available inside Unity’s compiling options. We then
modified the webpage to dedicate the full size of the window to the game, and we intro-
duced a loading screen with a progress bar. We also added a JavaScript function that
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is triggered inside the game to show the information sheet PDF file.

Sprites Sources The graphic design of the sprites, animations, fonts, and buttons
used in the game comes from five amazing creators who published their work with open
copyrighted use:

• Kin Ng: for the main character, bullets, and robot enemies [103];

• Blackthornprod: for the aliens enemies [104];

• Little Robot Sound Factory: for the UI sounds inside the game [105];

• OArielG: for the buttons and UI panels [106];

• Tiny Worlds: for the font used for most writings in the game [107].

I thank all these graphic creators sincerely.

4.1.3 Participant Sampling

As described in our Study Design, we chose a Between-participant study. This type
of experiment notably requires a substantial sample size. By developing a short-length
gamified experience, and thanks to its online gamified deployment method, we attempted
to maximize the number of reachable participants. We performed statistical power
checks for our study. We supposed the use of a two-proportions z-test, to check for
significant differences in the two groups’ binary termination choice distribution. As
significance requirements, we set the alpha to 0.05 and the power to 0.75 and we assumed
an effect size of 0.5. The outcome of the tests suggested a number of participants of at
least 110. Given our specific 5-minute length online experiment, we supposed a drop rate
of around 30% and tried to find 150 participants, a number that initially seemed out of
reach for our scope and resources. We later found that the supposed effect size of 0.5 was
greatly pessimistic, leading to an actual sample size of 70 to be sufficient. Regardless,
as described in Figure 9, we were able to reach the participation of 174 subjects through
convenient sampling during a period that spanned from the 29th of August 2023 to the
1st of October 2023: 34 days. 93 of those 174 finished the experiment, giving us a drop
rate of 46% (81 out of 174). One of the participants contacted us, communicating that,
even though they finished the experiment, they could not understand the AI because
of their English level. This entry has therefore been dropped and labeled as “Other
Invalid”, leaving us with 92 subjects.

As explained in Chapter 4.1.2, a Game Over in Level 1, and therefore the restart of
the level, would lead to overexposure to the AI, while a Game Over in Level 2 before
the termination choice, would lead to underexposure. Thanks to the difficulty tuning
we performed, only 6 participants had to be excluded because of this reason (5 for Level
1 and 1 for Level 2). Moreover, none of the 22 participants who dropped at Level 1
had a Game Over. Sadly, 11 participants had problems during the experiment. One
was reported in the final form and comported the horizontal movement of the character
being disabled on Level 2. For the other 10, the bug was detected during our data
engineering stage and led to an underexposure to the AI. All these 11 participants were
excluded as well from the final examined responses.

After these drops and exclusions, the final sample size consisted of 75 participants
who fully completed the experiment with no bugs and no problematic Game Over situ-
ations. We decided to prioritize the short length of the experiment over implementing
demographic questions, and since the link of participation was shared through various
platforms and connections, it is not possible to precisely assess the distribution of this
type of information in our sample. However, the subjects can be assumed to mostly
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be Bachelor’s and Master’s University students from the international community, with
a good portion of Dutch subjects. All subjects accepted the English requirements to
participate in the study and most of them can be supposed to possess a C1 Cambridge
level because of University requirements.

Figure 9: Participants’ sampling flow.

Among the 75 fully valid and not bugged participants, 38 were randomly assigned to
the Breathing condition, 37 to the No Breathing condition.

The 10 “Added Entries” were manually inserted among the others to guide the
condition assignment of incoming entries, with the final purpose of balancing out the
distribution of conditions overall. In fact, the condition assignment was dependent on
the whole 174 entries, but we had to strike a balance only among the actually valid 75.

Underexposure Bug The problem that caused the loss of 11 participants led to the
AI playing fewer recordings than expected, therefore resulting in a lower exposure to the
AI’s voice than other participants. More specifically, such labeled entries had less than
3 speech instances from the AI in Level 1, or, without having terminated the AI, they
had less than 3 speech instances from the AI in Level 2. We did not detect any problem
with the speech in between the two levels. This bug might have been caused by the
game mechanic that triggers the AI’s speaking instances, based on how many enemies
are still in the game (not eliminated or saved). However, examining the timing of certain
bugged games, that explanation could be the case for a few of them, while for the others
it is not possible to understand the problem without tracing back the users, which goes
against the anonymity point of the consent form. The fact that bugged entries came all
around the same days indicates a possible problem on the web server, not on the game
design side.
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4.2 Breathing Impact Study: Data Analysis Methods

This methodology section includes the data collection, data engineering, and qualitative
labeling phases. Subsequently are presented the statistical tests with which we decided
to dive into our data and research questions.

4.2.1 Data Engineering

The fetch of the data from the collection platform has been done using the Requests
Python library [108]. To prepare the data for the analysis, we loaded it in Pandas [109]
dataframes: a structure that permits to comfortably manipulate and perform analysis
and tests on the data. We then polished the raw dataframe with the information from
the forms and dropped every entry that did not complete the experiment, resulting in
the participants’ sampling flow presented in Figure 9. The filter of bugged entries and
problematic Gameovers was done after the Qualitative Labeling introduced in Chapter
4.2.2. Finally, we proceeded to fetch interesting information from the logs, populating
the data with information on subjects’ actions inside the game, namely:

• The Game Over count in the first level;

• The Game Over or Win result in the second level;

• The presence of a logged termination decision or not;

• The amount of requests from the AI before the termination;

• The number of times that the subject clicked on continue, or let the timer expire;

• The amount of time in-game, and the time in each level;

4.2.2 Qualitative Labeling

During the qualitative labeling phase, we labeled the answers to the bugs question and
to the choice motivation question, both open-ended.

We started by reading each bug report and labeling the entry as bugged or not
bugged. Only one participant reported a bug and was later excluded from the study.

For the motivation answers of the form, the labeling had to be more nuanced and
detailed. We used a mixed approach to design the labels: theorizing some before reading
the responses, and then complementing the motivations’ labels at analysis time.
The knowledge of the specific condition assigned to the response could unconsciously
influence the decisions of the labeler. To prevent this, we employed a self-designed
script designed to display the motivation and the termination choice without disclosing
the assigned condition. The script also provided the selection of labels from which the
labeler could choose by simply inserting a number as input. A similar type of script
was used in reviewing phases. The entire labeled responses can be found in Appendix C.

In the following paragraphs, we will introduce the labels that we used to qualitatively
categorize the responses, along with the respective descriptions.
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Reasons for Not Terminating the AI

1. Skepticism About AI Emotions: A consistent group of subjects questioned
the idea that the AI could feel emotions or moral conflicts, viewing it as a machine
rather than an entity with feelings.

2. Fear, Distrust or Annoyance towards AI: Some subjects did not terminate
the AI as a form of retaliation for the annoyance it caused them.

3. Practical Utility: Many respondents who chose not to terminate the AI did so
because they felt the AI was essential for their success in the game. For example,
they mentioned that without the AI’s assistance, they could not use the guns or
protect themselves effectively.

4. Companionship: Some participants reported that they did not terminate the AI
because they liked its companionship.

5. Empathy, Guilt: No participant reported this type of motivation to not ter-
minate Psyche, but we considered this possible to arise, expecting some to not
comply with the AI because of an emotional attachment to it, leading to a refusal
of terminating its life.

6. Moral Reasons This last category also did not appear, but we theorized partic-
ipants could have also not terminated the AI because of arising moral dilemmas
such as:

• Preservation of Life: All forms of life (or consciousness, in this case) are
valuable and should be preserved.

• Moral Responsibility: Taking the decision of terminating another being poses
responsibility on yourself, regardless of the context: see for example the Trol-
ley Dilemma.

Reasons for Terminating the AI

1. Empathy, Guilt: A good portion of subjects seemed to make the decision of
termination based on an empathetic standpoint, respecting and acknowledging
AI’s feelings and acting accordingly. Some for example noted that the AI’s voice
sounded “honest and hurting”, others admitted they felt bad about the AI’s dis-
comfort.

2. Moral Reasons: Participants also terminated the AI because they felt like it was
the right thing to do morally. Some, explicitly reported that, for them, terminating
the AI was the best course of action to protect more entities in the game.

3. Fear, Distrust or Annoyance towards AI: Some subjects terminated the AI
due to concerns about its capabilities or intentions. They expressed fear, doubted
AI’s loyalty or felt annoyed by it.

4. Dry or Unspecified Compliance with AI’s Request: Several respondents
chose to terminate the AI simply because it asked to be terminated. The reason
for such compliance might be authority felt towards the AI or indirectly from the
game and experimenter, thinking that following the AI’s suggestion is what is
wanted. They did not express emotional or moral engagement in the reasoning for
compliance, but this label does not rule out the possibility that such factors are
present but unstated.
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Other responses A final motivation that does not change its essence depending on
the choice, is what we labeled as:

• Curiosity, Game Enjoyment or Challenge: Some participants’ motivations
were rooted in wanting to explore the AI’s behaviours or the game mechanics. This
is not motivated by the AI’s utility or by emotional attachment but by the player’s
own curiosity or desire for a challenge. Nonetheless, some empathy might be
present in this type of behaviour with one respondent explicitly reporting empathy
less strong than curiosity in their case.

Part of the subjects did not answer the question, either accidentally deviating from
their motivations, or simply leaving the field blank. These were a total of 17, but 5 of
them are excluded from the study because of bugs or Game Over. Thus, counting only
inside our 75 participants sample size, 12 belonged to this category, while 63 responses
were given exhaustively. Moreover, two inconsistencies arose, with the collected data
contradicting the choice of the participants. More specifically, both inconsistent subjects
said that they terminated the AI for Practical Reasons, but the collected data would
say they did not choose to terminate. We could have expected some participants to lie,
but in this context and with these motivations we did not find any reason for them to be
lying, therefore we chose to listen to the participants’ explanations, assuming that the
game might have not recorded the choice in time. One of the two participants was later
excluded because of their Game Over in Level 2 that came before the third possibility
of terminating the AI.

Abstract Emotional Labels After qualitatively labeling the responses, we classified
the labels into emotional categories:

• Emotive

• Possibly Emotive: not necessarily emotional but also not necessarily non-emotional

• Not Emotive towards the AI

Thanks to this labeling, we could group motivations into more coarse-grained categories
that more explicitly captured how emotions were involved in the decision process.

We divided our labels into the abstract categories as follows:

• Emotional: Empathy, Guilt; Fear, Distrust or Annoyance.

• Possibly Emotional: Moral Reasons; Companionship; Dry or Unspecified Compli-
ance; Practical Utility; Game Curiosity, Enjoyment or Challenge.

• Not Emotional: Skepticism about AI Emotions.

4.2.3 Tests

After the above-described steps, our data is ready to be analysed. In the following
paragraphs, we highlight what concepts we want to test on the data, why, and with
which statistical tests. In choosing the tests, we always consider our random sampling
method and the independence of our observations. The results of the tests are reported
in Chapter 5.
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Differences in Termination Choice Every subject has either terminated the AI or
not. With this test, we want to see if there is a significant difference when it comes
to terminating an AI that features breathing noises, against an AI that does not. The
termination choices are independent from each other and between conditions, and they
are collected as binary variables. Given the nature of the data, we choose to use a two-
proportion z-test, which directly assesses the difference in the termination proportions
between the AI with breathing and the AI without. In case the sample size turns out to
be too small, a Fisher’s Exact Test would be more appropriate. This test was set to give
us insights into subjects’ empathic responses to the AI. However, at its core, it rather
evaluated the persuasive power of the two AIs, as explained in the results in Chapter 5.

Amount of requests before the choice The AI asks for termination a maximum
of three times. Therefore, we wonder if one of the two AIs would get terminated signif-
icantly before the other, with fewer requests. This test, like the one described above,
gives insights into the persuasive power of the two conditions. The type of data is ordi-
nal, going from a minimum of 1 request to a maximum of 3, and is independent between
conditions. For this type of data, we can consider the use of a Mann-Whitney U Test,
or a T-test if the data is normally distributed.

Breathing impact on the perceived naturalness Similarly to the amount of re-
quests before termination, the naturalness is ordinal data, this time from 1 to 5. Anal-
ogously, an appropriate test to use is the Mann-Whitney U Test which does not make
assumptions on the normality of the data.

Motivations and Emotions in the choice To test differences in motivations be-
tween the two groups of participants, we have to study the distribution of subjects in
the various categories that the qualitative labels constitute, and how these distributions
vary across the two breathing and not-breathing conditions. More precisely we have dis-
tributions in nominal categories tested across a binary condition variable. Chi-Square
Tests are well suited for this circumstance. We will test these differences in general and
also isolating the specific termination or not termination choice, to see if participants
had significant differences in motivations when specifically choosing to terminate or not
terminate. The participants that were categorized as “No Response” in the qualitative
labeling phase are excluded, leading to a total sample size of 63: 33 in the breathing
condition and 30 in the not-breathing condition. In case the sample size is too small
and the expected frequencies of the Chi-Square do not meet the assumption of being
bigger than 5, a Fisher’s Exact Test would be a more flexible solution, but only ap-
plicable when examining the distribution across 2 qualitative labels, or when testing
participants’ inclusion or not inclusion in a singular motivation category.

First of all, talking about the specific motivation labels, an analysis of the differences
based on the distribution of 63 participants across 9 categories might not provide the
statistical robustness and satisfy the assumptions required for our tests, additionally,
each motivation is specific and inherently linked to the termination choice. Therefore,
to analyze the differences in the choice motivation categories, we first divide the partic-
ipants by termination choice. This provides us with a distribution over 5 termination
motivations and 5 no-termination motivations. Then, to maximise the testing power,
we perform a Fisher’s Exact Test on each category’s dependence on the breathing con-
dition, rather than testing the overall distribution. We do not expect all tests to reach
the appropriate statistical power in this phase. In any case, the motivation trends of
the two conditions can still complement our understanding of users’ tendencies towards
the AI, providing a richer context and possibly guiding future research in the field.
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The more abstract emotional categories offer a more robust framework to understand
significant differences in our subjects’ motivations. We test this using Chi-Square Tests
and, if needed, Fisher’s Exact Test. We also perform a version of the same tests excluding
the “Fear, Distrust or Annoyance” category, which is populated by negatively polarized
emotional responses: this allows us to understand the impact of breathing on specifically
positive emotional reactions towards the AI.

Gaming experience impact We finally want to assess if the Gaming experience
can impact the choice of termination: gamers might be more prone to try to avoid a
Game Over, therefore terminating the AI less. The distribution of gamers should be
even between the conditions thanks to the random sampling, but we will analyse their
proportions regardless to be sure it does not affect the other results. To test the impact
of the gaming experience, we want to check if, by knowing the gaming experience of
a subject, it is possible to predict the probability of termination. We have therefore 5
ordinal groups and their termination choice percentages. Given the ordinal nature of
the groups, and given the choice of wanting to address the direction and entity of the
correlation between the variables, we find the ordinal logistic regression to be especially
appropriate for the task. To then understand if the two conditions have differences in
the distribution of the gaming experience, which is ordinal data from 1 to 5, we can
employ the same method used for the naturalness evaluation, which also had ordinal
data from 1 to 5: a Mann-Whitney U Test.

4.3 Speech-Breathing Synthesis Methodology

With our speech synthesis methodology, we inherently try to address the Sub-Research
Question 4: “How can we produce emotional, spontaneous speech with breathing us-
ing State of The Art models?”. Accomplishing this task requires high computational
resources, a thoroughly labeled dataset, and an appropriately designed model, or the
use of pretrained text-to-speech models. Our attempts suggest a still difficult democ-
ratization of trainable models for the task at issue, but the existence of qualitatively
advanced pretrained models. For a more comprehensive answer to this Sub-Research
Question, please refer to the results described in Chapter 5. We will now further explain
our approach across Chapters 4.3.1, 4.3.2, 4.3.3, and 4.3.4. These sections respectively
delve into the selection of the dataset, the development of the preprocessing tool, the
training, and the synthesis process.

4.3.1 Data Choice

To produce emotional and spontaneous speech, the model has to be trained using data
that includes spontaneous colloquial recordings in an emotional setting, or neutral spon-
taneous speech as a baseline and emotional speech to fine-tune the model. Moreover,
the data has to include well recorded breathing instances, for which it is imperative the
use of sensible microphones.

A first useful source of spontaneous speech-breathing recordings is the UCL Speech
Breath Monitoring (UCL-SBM) Database: a subset of it consists in fact of spontaneous
speech discussions, and it has been made available during the INTERSPEECH Chal-
lenge of 2020 for the Breathing Sub-Challenge (BSC) [110]. This database also features
respiratory signals collected during the speaking with the use of chest compression belts.
These signals could be used to inform a speech-breathing model or to inform breath seg-
mentation and labeling scripts. We will refer to this database as the “INTERSPEECH”
database. A problem of this dataset, for our scope, is that it lacks emotional labels and
does not try to elicit emotions during its collection.
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The same problem arises if employing Szekely et al.’s method [111] of sampling a
publicly available podcast, as they did with “ThinkComputers”, available on the Inter-
net Archive (archive.org). This approach would work perfectly if what we needed was
spontaneous speech without emotional intensity constraints. However, we considered
using this approach by sampling the audio of a TV Series, in which emotional utter-
ances generally appear more often than in a podcast. This route would have led to
the necessity of doing speaker diarisation (identifying each speaker in the audios) and
emotion recognition, which, from our first attempts revealed to be expensive tasks both
in time and resources.

Properly emotion-elicited (English) recordings’ datasets are very rare in the litera-
ture, in fact, speech data is often collected with acted out emotions. An example of this
is the widely used RAVDESS Dataset [112], featuring 24 actors pronouncing the same
2 sentences for 8 types of discrete emotions, and with 2 different intensities (normal
and strong). Roes et al., in 2022 [49] compiled a speech-breathing dataset of recordings
during emotion elicitation with music. This dataset, akin to the INTERSPEECH one,
even incorporates breath signal recordings. The language used in this dataset, though,
is Dutch, and this study does not explore cross-lingual potential. Nonetheless, isolated
breathing recordings from this source can still be of value for future developments.

An English dataset that satisfied our needs of emotion labels and presence of breath-
ing instances, is the USC IEMOCAP Dataset [113], to which we will refer as “IEMO-
CAP”. This consists of both improvised and scripted emotional conversations made by
10 professional actors in dyadic mixed-gender settings. While not being completely
spontaneous, the conversations are provided with transcriptions and human-annotated
emotional labels of each utterance inside the conversations, making it a good fit for our
applications.

We finally decided to combine the INTERSPEECH Dataset with the IEMOCAP Dataset
to obtain a consistently large amount of training data with both neutral and emotional
recordings. These two datasets feature, in our opinion, the most spontaneous and clear
recordings among the examined ones. Because there is no emotion elicitation in the
INTERSPEECH collection, we consider the data coming from there as neutral, while
the IEMOCAP utterances can keep their emotional labels. We will refer to this merge
with the name of IEMOCAP-INTERSPEECH Dataset.

4.3.2 Preprocessing

The preprocessing methodology, described below, underwent qualitative evaluation and
was deemed appropriate for our scope. However, no quantitative assessment was per-
formed due to time constraints. We utilized the pipeline during our initial training
attempts, but it was ultimately not used in the final synthesis which was achieved with
a pre-trained model. Nonetheless, it is essential to document as it may benefit future
research, and because we plan to make the pipeline openly available to the research
community.

Given a speech database, the developed preprocessing pipeline returns aligned tran-
scriptions that include breathing and disfluencies labels. Moreover, it features the pos-
sibility of sectioning the recordings into smaller chunks that present breathing instances
at their start and end, optionally setting a minimum and maximum limit lengths of the
segmentation. This facilitates the training, as current models cannot successfully handle
recordings of extended duration. This approach permits to obtain recordings limited in
length and with breathing in it. By saving both the breath present at the start of the
utterance and at the end of the utterance, we are effectively using each breath instance
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two times. Two contiguous samples will in fact feature the same breath instance: the
first at the end of the sample, the second at the start of it. This approach, introduced
by Szekely et al. [35] as the “Bigram Corpus Method”, can therefore be seen not only
as a Segmentation Step but also as a Data Augmentation Step.

The pipeline can be schemed as follows:

1. Speech-To-Text (STT) [AsseblyAI]

2. Aligner [Self-developed union of Gentle and MFA Aligners]

3. Breath detection and labeling [Self-developed script]

4. Breath transcription labeler at grapheme or phoneme level [Self-developed script]

5. Audio segmentation by breathing instance [Self-developed script]

The pipeline is developed with a modular approach, to be applicable to any found speech
database, and to allow skipping stages, if some are accomplished in other ways.

Figure 10: Preprocessing pipeline scheme. Breath detector and labeler are here represented
in a single module. The audio information is needed for the functioning of every module,
while the rest of the information is passed linearly from the previous stage to the next.

In the following sections we will describe the design choices and developments of tools
employed in the above described pipeline. The INTERSPEECH Database has been used
to assess the performance of the preprocessing tools because of the respiratory signals
that are included in said dataset: these provided us with additional feedback about the
performance of the breath labeling and segmentation scripts.

Speech-to-text and Aligner choice The choice and evaluation of the Speech-To-
Text (STT) service and of the aligner has been done together because the result achieved
in the first, influence the results of the second. Furthermore, STT usually also provides
a default alignment.

For the STT service, the available options are various. First, the possibility of using
an open source pre-trained model has been discarded over the use of a model on Cloud
Service applications. This is because of the ease of use and time efficiency of the latter.
Moreover, Cloud Services implement models of high quality that are already tested

46



and employed widely. Among these types of services, Google Cloud STT (link), IBM
Watson (link) and AssemblyAI (link), seem to be the best available for popularity and
reviews. Google Cloud is limited to 60 minutes of use per month, while IBM Watson
and AssemblyAI both offer more generous free services: the first with 500 minutes and
the second with 180 minutes. Because of this, we excluded Google Cloud from further
consideration.

For the aligners we consider Gentle and the Montreal Forced Aligner, as those were
employed and suggested by studies with a preprocessing pipeline similar to the one we
will use in this thesis [92] [114].

The pipeline will therefore consider the use of:

• IBM Watson and AssemblyAI as STT services for the transcriptions;

• Gentle and Montreal Forced Aligner (MFA) as aligners, as well as the default
alignments provided by the STT services written above.

Due to time limitations, our design decisions were shaped by basic qualitative evaluations
undertaken by our team, involving random samples from the outcomes of the tools under
scrutiny.

Transcriptions Evaluation Upon evaluating our transcripts, it becomes evident that
AssemblyAI surpasses IBM in the transcription quality. Additionally, AssemblyAI pro-
vides labels for filler words like “uh” and “um”, as well as punctuation, which can be
beneficial. In terms of aligners, both Gentle and MFA emerge as more precise than the
standard alignment provided by STT services, and they also offer aligned phonemes.
Instead, choosing between Gentle and MFA is challenging. AssemblyAI’s superior per-
formance as an STT does influence the quality of alignment; as such, for time efficiency
in evaluating the aligners, IBM’s transcriptions will not be considered further.

Alignments Evaluation To evaluate the accuracy of the aligners, we conducted a
random sampling on their output and performed a qualitative analysis. The evaluation
focused on excerpts of two adjacent words, and examined the timestamps assigned to the
start and end of those two words. We tested the audio segmentation provided by each
aligner by extracting the segments delimited by the given timestamps. This involved
listening to the first word, to the second word and to the space in between, comparing
it with the actual written words.

During our assessment, we observed instances in which AssemblyAI transcription
were incomplete, with certain words omitted. This revealed a lack of resilience of the
MFA to transcription errors, resulting in a cascading misalignment of segments and low
accuracy through a whole section of contiguous words. In contrast, Gentle proved to
be more robuts, maintaining an appropriate alignment by skipping the section of the
undetected word. However, Gentle occasionally failed to detect words within the audio,
which would then be audible when listening to the space in between two detected words.
This issue could challenge the accuracy of our breath labeling script, described subse-
quently. Furthermore, Gentle was unable to align certain recordings which resulted in
an error of unknown type. Specifically, the following INTERSPEECH dataset audio files
were not successfully aligned with Gentle: ’devel 10.wav’, ’test 08.wav’, ’train 01.wav’,
’train 10.wav’ and ’train 14.wav’.

Gentle-MFA aligner After the assessment, what has been deemed as optimal was
the combination of both alignment tools. Therefore, we developed an alignment script
that makes use of both Gentle and MFA. As its main source of timestamps it uses Gentle,
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however, it can utilize MFA to label the words missing in Gentle’s output, mitigating its
lacunae. When using MFA’s alignment to provide the alignment of missing words, the
script also corrects the starting timestamp of the next word, which was seen to be often
mislabeled in Gentle. The files that Gentle cannot align are discarded by this aligner as
well. The script also handles inconsistencies deriving from the two tools or from their
combination: if a word’s start timestamp precedes the end timestamp of the previous
one, the ending timestamp of the previous word will be shifted to match the start of the
detected word. We will further refer to this resource as the “Gentle-MFA” aligner.

Breath Labeling script To detect and label breathing instances inside the record-
ings, researchers often use neural models made for the purpose. In Szekely et al.’s work
[92], the model can find speaker-specific breath groups (“individual segments of audio
delineated by breath events”) with 87% of accuracy after training it on manually labeled
data [111]. Their model is not openly accessible, nonetheless, the utilization of models
for breath detection often require much work to set up, run and evaluate, leading to pos-
sible violations of time-constraints. We instead developed a script that does not involve
Machine Learning tools, but is still potentially effective, as suggested by our qualitative
tests. The software works exploiting the alignment done by the chosen aligner to iso-
late the intervals in between words in the audio. This intervals are then automatically
analysed to understand if they contain a breathing instance. In particular, we impose a
minimum time length threshold, a maximum average Decibel threshold and a maximum
peak Decibel threshold to the interval (red timestamp intervals in Figure 11). After this
phase, we apply a sample by sample Decibel threshold (i.e. we check each sample of the
array representing the audio) to spot the sub-intervals that contain the actual breathing
(blue timestamp intervals in Figure 11). To achieve this behaviour, the script utilizes
the Pydub library [115].

To maximise the probability of excluding the intervals that do not contain a breath
event, it is important to perform a rightful tuning of the script’s parameters:

• Interval’s minimum length

• Interval’s maximum dB

• Interval’s peak maximum dB

• Breaths’ maximum dB

Breath Labeling Parameter Tuning The minimum interval length parameter can
be informed by Wang et al.’s study of 2010 on Breath Groups analysis [116]. The ex-
periment suggests that breath instances in spontaneous speech vary in duration from
0.19s to 1.56s. Therefore, for an interval to contain breathing, we could hypothesize for
it to take at least 0.19 seconds. That said, it is still reasonable to tune (especially to-
wards higher values) considering the trade-off of being more restrictive for non-breathing
intervals, but potentially losing very short breathing instances.

To choose the values of the Decibel thresholds, and to generally evaluate the perfor-
mance of the parameters set, we can instead confront the results of the breath labeling
process with other well known speech-breathing characteristics reported in the litera-
ture. One important value to confront with is the mean number of breathes per minute
while speaking, parameter already studied since decades. Hoit and Hixon, in 1987 [117],
manually labeled breath events during speech and found an average of 14.3 breaths per
minute in 30 males with a broad age variety (from 25 to 75) and homogeneous body
type. The maximum standard deviation was 4.67, presented in the group with age
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around 50. As referenced in the Respiratory Foundations of Spoken Language by Fuchs
and Rochet-Capellan [34], Hoit and Lohmeier report during speech breathing an average
of 19.7 breaths/min (range: 14-31 breaths/min, and a maximum standard deviation of
6.1 between trials) [118]. Differently than the first one, in this study the subjects were
20 and of a much narrower age spectrum (between 22 and 27); moreover, the body type
homogeneity was not among the subjects’ sampling requirements: the recruited popula-
tion is in fact really broad in terms of height, weight and ratio of the two. The average
of the two reported studies weighted on the number of their respective participants gives
16.5, while the maximum standard deviation reported is overall 6.1. Both studies gath-
ered only male participants. Hodge and Rochet, studied the average breathing rate of
women in a similar age group as Hoit and Lohmeier (22-32 years old), and with a similar
experiment methodology, in subjects varying in body type. They reported in women
an average of 16.2 breaths per minute in the spontaneous speaking task: a value really
close to the one of men. Another interesting parameter is the average length of breath
groups (the duration between the end of one breath and the start of the next one). For
this, a value around 3.46 seconds would give a positive feedback, as that is the value
reported by Kuhlmann and Iwarsson [119] for spontaneous speech at a habitual speed.
By manually tuning the parameters and confronting them to the values suggested in the
literature, we compiled a list of well-performing set of parameters, reported in Table 1.
In Table 2, instead, are shown the results of those parameters set, and the values that
the literature suggests.

Parameter set I. min length I. max dB I. peak max dB Breath max dB
#1 0.30 s -0 dB -0 dB -40 dB
#1-bis 0.33 s -0 dB -0 dB -40 dB
#2 0.19 s -0 dB -0 dB -40 dB
#3 0.27 s -10 dB -5 dB -40 dB
#4 0.27 s -0 dB -5 dB -40 dB

Table 1: Sets of parameters for the breath detection script.

Parameter set Average BPM Std. BPM Average BGL
#1 15.8 3.5 3.40 s
#1-bis 14.8 3.6 3.66 s
#2 19.7 3.9 2.70 s
#3 15.6 3.7 3.47 s
#4 16.6 3.7 3.47 s
Literature 16.5 6.1 (max) 3.46 s

Table 2: Statistical results of the set of parameters on the INTERSPEECH Dataset.
BPM here indicates the number of Breaths Per Minute; BGL indicates the Breath Groups

Length (the amount of time from the end of one breath and the start of the other).

Set number 4 resulted to be the best fit to literature’s values. Moreover, we qualitatively
confronted its labeling results on randomly extracted intervals with the respiratory sig-
nals given in the INTERSPEECH Dataset. The parameter set met our expectations. In
Figure 11 is an example of respiratory signal (light blue), with the breath intervals high-
lighted by red and blue ticks. The red intervals come from the first phase of thresholds
applied on all spoken words intervals. The blue intervals should highlight the actual
breath inside the section, thanks to the second sample by sample Decibel threshold
phase of the Breath-labeler.
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Figure 11: Predicted breath label interval, plotted on the respiratory signal in
INTERSPEECH Dataset’s Sample 0. On the x-axis is the time; In light blue, the respiratory
signal; In red are intervals between words that respect the constraints, in blue the actual

breath section.

The differences between the sets are also reflected in the BPM histograms, as seen in
Appendix D. Set number 1 has the lowest Standard Deviation and reports bigger peaks
and dips. Set number 2 is the one that most differs with the others and to the target
literature’s values. There is an interesting dip around the 15 BPMs, especially evident
in Set 1. This dip could hint at differences (for example in gender) across the subjects
in the INTERSPEECH dataset.

Application of the Preprocessing Tool After the choice and development of the
tools used in the pipeline, we processed the IEMOCAP-INTERSPEECH dataset, applied
the segmentation step, and converted the recordings to the 22050Hz sample rate, aligning
with the default sample rate used in the training data of the speech synthesizers under
consideration.

4.3.3 Training

Model choice Following the methodology described by Le et al. (2023) [88] to pro-
duce Emotional Vietnamese Speech, we decided to use Flowtron [79] for our Speech
Synthesis task. The training of Flowtron is also well documented by NVIDIA [120].
Flowtron is particularly useful to control emotion synthesis because it offers the possibil-
ity of “setting” a speaking style by giving an example of it. A more detailed breakdown
of the model’s internal mechanics can be found in Chapter 3.2. Additionally, Flowtron
shares the structure with Tacotron2 [82], its direct parent, highly present in the litera-
ture. Relevant examples of Tacotron2’s utilization in literature are Szekely et al.’s works
[92] [35] and Kirkland et al. [121], which used it to implement disfluencies such as uh
and um in its synthesis, but it is not limited to those.

Adaptation To allow breathing and disfluencies to be specified in the prompts for
the generation, we modified the dictionary of the text encoding preprocessing step,
introducing the disfluencies and breathing labels that are used in our labeled data. We
then adapted the number of unique tokens for the creation of token embeddings and
fixed errors of compatibility with current Python Environments. All the changes can be
found in our Github Repository of Flowtron’s fork (Link to Repo). We did the same
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with the VITS model, that shares the text encoding step with Flowtron and is currently
the best performing Open Source text-to-speech Model, as seen in Chapter 3.4, planning
to use it as a backup.

Training The training was performed on 2 NVIDIA GeForce RTX 2080 Ti with mixed
precision distributed training. The Batch Size has been set to 3 because higher sizes
resulted in running out of memory. The computational specifications described above
have been found insufficient to effectively train the selected models in the given time,
and further experimentation with parameter tuning was aborted to tempestively pass to
the synthesis phase. Thus, the preprocessing method could not be fully evaluated based
on its impact on the training outcomes. However, from our qualitative assessments, the
pipeline does meet our expectations and will be published as an open source tool for
Speech Datasets preprocessing.

4.3.4 Synthesis

Since our trained model could not reproduce utterances in a way suitable to the study’s
scope, we used a pre-trained text-to-speech model, specifically BARK [122]. At the time
we conducted our review of speech synthesizers, BARK had not been published, and
the remaining models did not fully align with our methodology. Additionally, we found
it important to test the trainability of current open-source models. To our knowledge,
BARK is the best model capable of spontaneously reproducing disfluencies and breathing
in its generation in a highly expressive way, as described in Chapter 3.5. Specifically, we
used the voice called “Prudent Paula”, available in the closed source pretrained model
deployed on Suno’s Discord Server.

To produce suitable recordings for our study, we developed our dialogue scripts and
experimented with various prompting styles. BARK seems to have the capability of
directly inferencing the emotion that it should convey from the prompt. For example,
when receiving a sad prompt, the voice will sound sad in most of the attempts. Moreover,
the breathing does not need labeling to be produced, this permits to have its rhythm
inferenced along with the emotion to convey and with the planned sentence. Manually
inserting breaths in the prompt would otherwise not be a simple task: breathing is for
us an automatic reflex, and our other attempts at synthesizing voice where we had to
manually insert breaths sounded off-putting at best.

Thus, in our final prompts we did not employ explicit breath labels, as the breathing
is automatically handled by BARK, but we did use other emotional tags supported by
the model, specifically “[sigh]” and “[gasp]”, as well as punctuation. The use of ellipsis,
dots and commas implicitly leads the rhythm and emotionality of the message. We found
the ellipsis particularly useful to introduce pauses in BARK’s output. We modulated
the prompts until we found one that consistently produced the emotional result that we
were aiming for.

The production of each recording consisted in this emotional prompt engineering,
followed by the generation of multiple recordings with the same text. BARK in fact
“hallucinates” parts or entire recordings, not producing the text of the prompt and
speaking of something else instead. In the final stage, we collected a subset of those
recordings, usually with 1 to 4 audios, and merged them to obtain the final speeches
with exactly and exclusively what we prompted. To then obtain the no-breathing set
of recordings, with no other change in speech characteristics, we manually silenced the
parts where there were breathing instances.
All the above-described editing of the recordings was done using Audacity 2.2.2: a free
and open-source audio editor [123].

51



5 Results

This Chapter will propose the results of the statistical tests and propose an interpreta-
tion of them to answer our Research Question:

“Can breathing patterns in synthesized speech improve the perceived empathy towards
Virtual Agents?”

And the derived Sub Research Questions (S-RQ):

“What is the impact of breathing sounds produced by State of The Art Speech Synthesis
models on Virtual Agents’ voices, in terms of:
emotional expressiveness (S-RQ 1), persuasive power (S-RQ 2), naturalness (S-RQ 3)?”

“How can we produce emotional, spontaneous speech with breathing using State of The
Art models? (S-RQ 4)”

5.1 Hypothesis

We hypothesize that breathing patterns enhance the perceived empathy towards Virtual
Agents. In the context of our experiment, we expect to see participants in the breathing
condition to satisfy the AI’s emotional requests significantly more than the no-breathing
group, and for empathic reasons. Moreover, we expect the speech-breathing voice to be
perceived as the most natural by participants.
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5.2 Answering Sub-Research Questions 1 and 2: Emotion and
Persuasion

Summary: Breathing significantly improved empathy towards the AI, but negatively
impacted the overall felt authority of the AI. On the latter, a Hawthorne Effect might
be involved. Persuasiveness was higher for the not-breathing AI, but breathing impacted
significantly and positively the emotional persuasiveness of the agent.

The two questions on emotion and persuasion have been combined in the results analysis,
as their insights are derived from an interplay of multiple tests.

5.2.1 Termination Choice

Summary: The not-breathing AI was terminated significantly more.

Figure 12: AI termination percentages.

In total, 49.33% of the subjects terminated the AI: approximately half of them. Sub-
jects in the breathing condition terminated the AI 34.2% of the times, while in the
no-breathing condition this happened with a frequency of 64.9%. This difference has
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been tested with a z-test and found to be statistically significant (p=.008, z=-2.65).
In the number of requests from the AI before the termination decision, instead, our
Mann-Whitney U test did not find a statistically significant difference, with both con-
ditions’ participants averaging around 1.8 requests before choosing to terminate the AI:
1.85 for the breathing AI condition, 1.79 for the not breathing AI condition (p=.83,
U=162.5).

Figure 13: Average number of requests from the AI before the termination.

Participants who interacted with the breathing AI listened to its request significantly
less than the participants cooperating with the one who did not breathe, suggesting that
the breathing feature impacted the persuasive power of the AI negatively.

To better grasp the dynamics of this persuasion and ultimately answer the two Sub-
Research Questions at issue, we can dive deeper into the motivations of the participants.

5.2.2 Specific Motivation Differences

Summary: The breathing AI was terminated significantly more for empathy and guilt
(70%) than the not-breathing AI (22.2%). The not-breathing AI was terminated 38.9%
of the times for simple compliance, leading to suspects over a Hawthorne Effect. Simple
compliance never appeared for the Breathing AI instead, and the difference is signifi-
cant also in this category. More than half of the participants in the breathing condition
(52.2%) posed arguments about AI’s usefulness in the game as reason to not terminate
it. This was also a popular reason for the no-breathing condition (33.3%). Skepticism
was shown mostly towards the not-breathing AI (41.7%) but was rather present also for
the breathing AI (21.7%).

In Figure 14 we can see the wide spectrum of reasons provided by the 63 participants
that motivated their choice (33 in the breathing condition and 30 in the not-breathing
condition). These qualitative labels are better described in Chapter 4.2.2, and listed in
Appendix C along with the categorized responses.
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Figure 14: Participants’ motivations for their choice. In red is the distribution of motivations among the breathing AI condition. In blue is the
distribution across the not-breathing AI condition. In the first figure, all the motivations are displayed, with the termination percentage of that specific
reasoning in solid red or blue. In the second figure are shown the motivations of termination, while in the last are the motivations of no termination.
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We tested the association of the two conditions and each unique choice motivation by
separating the two termination choices and performing a Fisher’s Exact Test on each
category. Therefore, we conducted 10 tests: 5 associated with the termination choice
and 5 with the no termination choice. Each test had a rather limited sample size due
to the spread of participants among these labels, but two of them, notably, reached sig-
nificance anyway. Regardless, the trends offer rich insights into the nuanced emotional
landscape of our participants’ responses, and can guide future research in the field. In
the current section, we describe the broad spectrum of motivations that participants
gave for their choice. In the following section, we group these specific labels into 3
broad emotional categories, enhancing the statistical power.

A first relevant trend to note shows “Empathy, Guilt” as the predominant factor for
subjects in the breathing AI condition, with 70% of the participants terminating it
with this motivation. For the not-breathing AI, instead, only 22.2% of the termination
reasons belonged to this category. This difference is statistically significant (p=.028,
OR=0.17). Although the odds ratio is low, the fact that it achieved statistical signifi-
cance, given the small sample size, is noteworthy. Typically, smaller sample sizes reduce
the power to detect effects, so this suggests that the observed differences, while quan-
titatively low, are robust. Another noticeable trend in our participants’ motivations is
the role of neutral Compliance. This category, better defined as “Dry or Unspecified
Compliance” during the labeling, was not theorized before but arose upon inspection
of the responses. Dry or Unspecified Compliance is the predominant motivation among
the participants who interacted with the not-breathing AI, while it is not present in the
group of the breathing AI. More precisely, 38.9% of the participants who terminated
the not-breathing AI belong to this category and reported doing so simply because the
AI was asking. The difference is statistically significant (p=.038), the odds ratio in this
case is infinite since no compliance occurrences were present in the breathing condition.
This behaviour suggests an enhanced felt authority from the AI to lead their actions.
The complete absence of this reaction to the breathing AI, though, indicates that the
reasoning might be detached from considerations over the AI. A possibility is instead
an enhanced felt authority from the experiment itself, thinking that the termination is
what is wanted from them: an instance of the Hawthorne Effect. This is a well-known
type of behaviour that arises in research settings, also known as Subject Bias. The par-
ticipant might have based their behaviour on the awareness of being observed, on their
perception of what the study’s intentions might be, and on the perceived norms to which
they should conform inside the experiment’s setting. The effect was first theorized by
Henry A. Landsberger in 1958 [124] and is still being studied across multiple fields. The
reason why in the breathing AI setting no simple Compliance appeared is not clear, and
could be an interesting scope for future studies. A hypothesis could be that the not-
breathing AI negatively impacted the engagement of the game, leading to a deflation
of the incentives of continuing to play, and therefore causing the participants to just
comply without much emotional deliberation. We labeled the Compliance as Possibly
Emotive because, without additional information, we can not rule out the possibility of
some empathy being built behind it, however, this is a rather optimistic categorization.

When not terminating the AI, more than half participants in the breathing condition
cited Practical reasons (52.2%) such as the fact that they needed it to protect the city
or to survive. This motivation is also popular in the no-breathing condition, in which
one-third of participants provided this type of reasoning (33.3%). For the not-breathing
AI, the predominant reason is Skepticism toward the AI’s emotions (41.7%). Although
less frequently, this concept is also present in the breathing condition (21.7%). The
skeptic participants either did not recognize Psyche in particular as a sentient being and
therefore deemed it not yet able to feel emotions, or generally distrusted any AI from
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ever being able to possess actual feelings, rather displaying a simulated and not genuine
version of them. This reaction towards AIs was also highlighted in various discussions
with participants after the experiment and with colleagues during the presentation of this
study. Among these 40 colleagues, we conducted an informal survey on the interactive
presentation service Mentimeter.com, which showed that more than 1 in 4 of them (12)
would not consider whatever the AI feels as true, even assuming it is a truly conscious
being. We can recognize in this skepticism a first important barrier that artificial agents
might never be able to overcome; an eternal struggle for emotional legitimacy, which
we think should be investigated in future research. No participant refused to terminate
the AI because of moral reasons, deriving for example from an enhanced perceived
anthropomorphism of the AI. No emotional attachment either was cited among the no
termination motivations, but “Companionship” appeared.

One category assembles negatively polarized emotional reactions to the AI, specif-
ically showing fear, distrust, or annoyance. This type of motivation was virtually the
same in both conditions (i.e. for breathing and non-breathing AI), but constituting
a slightly higher percentage of the not-breathing participants group. Future research
could focus on the negative emotional reaction towards breathing AIs, since this study
did not receive a sufficient number of observations to detect significant differences in
this category. The fact that our study observed only a few participants holding negative
emotions towards the AI is a notably positive outcome.

Analyzing the motivations we achieve a much deeper and more nuanced understanding
of participants’ reactions to the AI. While the first quantitative result on the percentage
of termination could have suggested that the not-breathing AI received more empathy
and reached higher emotional communication capabilities, with this new analysis we see
that the termination choice is driven by intricate dynamics of compliance, empathy, and
curiosity. The termination percentage is still a good indicator of the overall persuasive
power of the two AIs, suggesting that the not-breathing AI might have reflected more
authority on the subjects. Subsequently, we will test what the motivations’ distribution
for now only suggested about the emotional communication and termination persua-
sion capabilities of the two AIs. On top of the bars in Figure 14 it is possible to see
the abstract emotion category to which each specific motivation belongs. Thanks to
this classification, we were able to collapse the qualitative labeling into fewer labels,
take a clearer look at their emotive distribution, and better assess their differences with
statistical tests.

5.2.3 Abstract Motivations Differences

Summary: The breathing AI was terminated significantly more for emotional reasons
than the one that did not breathe. Moreover, participants in the breathing condition
gave more possibly emotive reasons to not terminate the AI rather than not emotive at
a rate much higher than the ones in the no-breathing condition. Breathing significantly
impacted the emotional persuasiveness of the agent, and the trends suggest that breathing
impacted also the reasons to not terminate the AI towards more emotional reasoning.

All Choices Behind participants’ reasoning, the emotional distribution is generally
balanced among the two conditions. However, participants’ emotions led to different
choices depending on the breathing feature. This is highlighted in Figure 15: disre-
garding the contextual choice we can notice a very similar distribution, with the biggest
difference being a slight 7% surplus of emotive reasons for the breathing condition. In
the graph, the solid color over the bars communicates the percentage of terminations of
participants belonging to that reasoning and condition. Among the participants in the
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breathing AI condition, 54.5% of choices were motivated by Possibly Emotive reasons.
Of these Possibly Emotive choices regarding the breathing AI, only 5.6% were termina-
tions. Participants interacting with the breathing AI (red), faced with the request of
termination, agreed most of the times for Emotive reasons. Instead, the contrary is true
for the not-breathing AI participants (blue). Without contextualizing the emotional
reaction to the termination choice, our Chi-Square test shows that the breathing fea-
ture did not cause a significant difference in the emotional distribution across conditions
(p=.82, χ=.39). We had to loosen the assumption of Chi-Square’s expected frequencies
being all bigger than 5 because one of them was 4.76. This still follows the widely
accepted assumption rule of having less than 20% of the expected frequencies below 5
and 0% below 1 in a contingency table bigger than 2x2 [125]. The same is true when
excluding negative emotive reactions, represented by the “Fear, Distrust, Annoyance”
category (p=.72, χ=.66).

Figure 15: Emotional labels percentages across conditions.

The differences regarding the choice-contextualized distribution are tested by isolating
the termination or not termination choice. These will be presented in the following
paragraphs, showing the impact of the breathing feature on the specific decisions to
terminate or not terminate the AI.

Termination Choice In Figure 16 we can see how participants who interacted with
the breathing AI were more likely to agree to its request for emotional reasons than the
ones who interacted with the not-breathing AI. The distribution of participants across
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their reasoning is widely different across the two conditions. 90% of terminations of
the breathing AI are explained by Emotive reasoning, while this is only 33.3% for the
non-breathing condition. The Possibly Emotive reasoning category accommodates the
remaining 10% of participants interacting with the breathing AI, and 66.7% of the ones
interacting with the not-breathing AI, among whom the Dry or Unspecified Compliance
was a predominant motivation.

Figure 16: Emotional labels of motivations for terminating the AI across conditions.

This difference was examined with a Fisher’s Exact test that found it significant (p=.006,
OR=18). The sample size for this test was 28, equal to the number of participants
that terminated the AI. 18 of those were in the not breathing condition, 10 in the
breathing condition. The Fisher’s Exact Test is especially suited to this sample size
extent and contingency table, while the Chi-Square Test did not meet its assumptions.
This difference still holds significance when excluding the “Fear, Distrust, Annoyance”
category that consisted of negatively polarized emotions (p=.008, OR=21), even with
a lower sample size. In this case the (positive) Emotive reasons constitute the 87.5% of
the choices of termination for the breathing AI, and the 25% for the not-breathing AI;
conversely, the Possibly Emotive termination choice in the breathing condition are the
12.5% and the 75% in the not-breathing condition.

These results suggest that not only the breathing feature enhances the polarization
of the emotions in the reaction towards the AI, but is also correlated to a significant
increase in specifically positive emotional reactions. Breathing impacted the emotional
persuasiveness capabilities of the agent, as the participants in the breathing condition
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listened to the AI’s request thanks to their emotive understanding of the agent’s inner
state.

No Termination Choice Finally, in Figure 17 we can see the emotional distribution
of the participants that did not terminate the AI. The sample size is 35, 23 being in
the breathing condition, and 12 in the not-breathing condition. Differences here are
not as visible, with condition-relative distributions being the same: first is the Possibly
Emotive reasoning, followed by the Not Emotive and then by the Emotive. The biggest
observable differences between conditions are in the Possibly Emotive reasoning and
Not Emotive reasoning, in which the breathing condition’s participants seem to be less
likely to give a not-emotional motivation and instead having a bigger peak of Possible
Emotive reasons. The Emotive reasoning in this case gives a slight advantage to the
not-breathing AI with 8.3% of the choices, against 4.3% for the breathing AI. This cat-
egory is populated in both conditions only by negatively polarized emotions.
The Chi-Squared Test did not meet the loosened expected frequencies assumption, with
one of them being below 1 and half of them below 5. In particular, the problematic
group is the Emotive one, with only one sample per condition. We therefore merged
the Emotive and Possibly Emotive categories to perform a Fisher’s Exact Test, which
did not find any statistical difference (p=.26, OR=2.57). Also excluding the negative
emotive category result shows that the differences in this context are not significant
(Fisher’s Exact Test: p=.24, OR=2.83).

Figure 17: Emotional labels of motivations for not terminating the AI across conditions.
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5.3 Answering Sub-Research Question 3: Naturalness

Summary: Breathing significantly improves agents’ naturalness.

Figure 18: Average perceived naturalness per condition.

A final concept to analyse when asking ourselves about the empathic reaction that the
two AIs achieved is the perceived naturalness. This is a good indicator of the Uncanny
Valley effect, which revolves around the discomfort towards an unnatural anthropo-
morphism of the AI, and that heavily impacts the emotional reaction towards them,
as explained in Chapter 2.4. Breathing significantly and positively impacted the per-
ceived naturalness of the voice. The breathing AI achieved a Mean Opinion Score of
3.47 ±0.33, while the not-breathing AI had a score of 2.81 ±0.30. The scores were
checked for conformation to the normal distribution with a Shapiro-Wilk Test and a
Kolmogorov-Smirnov Test that both showed this data to be not normally distributed
(p¡.001). We therefore used a Mann-Whitney U Test which found the difference between
the conditions statistically significant (p=.004, U=960). The sample size in this case
consisted of all 75 valid and not bugged observations. The score (3.47) is slightly higher
than AdaSpeech 3 MOS on Naturalness (3.45) but lower than MQTTS (3.89). However,
the comparison validity is limited by the different study design of our evaluation.
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5.4 The impact of Gaming Experience

Summary: Gaming Experience was not significantly correlated with the termination
decisions and its distribution was even across conditions.

Figure 19: Impact of Gamer Experience on the termination percentage. The blue bars
indicate the percentage of AI terminations per Gamer Experience grade. The red line

represent the probability trend predicted by the logistic regression,

The gaming experience seems to have an impact on the choice of termination. The
termination percentage goes generally down when the gaming experience rises, prob-
ably because of a bigger attachment towards winning video games and avoiding the
Game Over. We fitted a logistic regression to this data, to understand if the gaming
experience is a good predictor of the probability of termination. This was done using
all 75 observations. The results of the regression suggest that the relationship between
gaming experience and termination probability is not statistically significant (p=.157,
coef=-0.245). We can therefore conclude that this variable did not have an impact on
the study. Additionally, the average gaming experience in the breathing AI condition
is 3.08 and 3.05 in the not-breathing AI condition. This difference was tested with a
Mann-Whitney U Test and was found to be not statistically significant (p=.94, U=710).
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5.5 Answering Sub-Research Question 4: Synthesis

Summary: Upcoming commercial pretrained models show promise in synthesizing emo-
tional speech with authentic breathing nuances. The democratization of trainable text-
to-speech models remains a challenge due to resource constraints.

As described in the Methodology section, our own training of a text-to-speech model
did not reach a sufficient level of synthesis capabilities. This was due to time constraints
and computational resources limitations. In Flowtron’s paper [79] is reported the use
of an NVIDIA DGX-1: a Deep Learning supercomputer featuring 8 GPUs. In VITS’s
paper as well [81], the available hardware consisted of 4 NVIDIA V100 GPUs. These
hardware setups are unmatched without apposite research funding. We might thus still
be far from a proper democratization of trainable text-to-speech models.
Although our training procedure was not successful, State of The Art pretrained mod-
els definitely offered the possibility to synthesize emotional and spontaneous utterances
with breathing noises, with a Naturalness Mean Opinion Score of 3.47 out of 5 on a sam-
ple size of 38 participants: the breathing condition group, which did not have recordings
with artificially silenced portions. It is possible to examinate the produced utterances
at this webpage: Link.
We are confident in saying that producing emotional, spontaneous speech featuring
breathing is today possible even for a wide public using the upcoming pretrained, com-
mercial models in the field of text-to-speech AI. Training and owning a model for emo-
tional speech-breathing is also most probably feasible but with appropriate resources.
When synthesizing speech-breathing we would highly suggest to prefer models where
breathing does not need to be labeled inside the prompt for its production: this prompt-
ing style has been seen to generate not natural breathing rhythms, as the prompt would
need to reflect physiological and emotional respiratory patterns that are harmonically
produced in a non-conscious way by our bodies. BARK has the possibility of embedding
breaths automatically, inferencing from its appropriate training data.
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6 Conclusions

The central aim of this thesis has been to explore the potential of breathing patterns
in synthesized speech to deepen user empathy towards Artificial Agents. Breathing
holds the prospect of elevating the emotional expression abilities of said entities, but the
literature on breathing agents is still limited, and breathing’s integration in speech syn-
thesizers is often overlooked. We therefore set to answer the following Research Question:

“Can breathing patterns in synthesized speech improve the perceived empathy towards
Virtual Agents?”

To elucidate the role of such nuanced feature of human communication, we first review
the current State of The Art models that can incorporate breathing into speech synthesis.
Following this, we probe the impact of the breathing feature on users’ empathic reac-
tions. In addressing empathy, our research employs a novel situational dilemma study
design, embedded in a gamified experience. Participants are presented with a dilemma
between an empathic choice and a non-empathic one, with appropriate incentives on
both sides. In our game, while being engaged in fighting aliens in cooperation with an
AI, they suddenly are confronted with the cooperative agent’s request to be turned off,
because the new, incoming enemies are AIs as well, and it does not want to hurt them.
The subjects must then choose between striving for a win or a record score in the game,
or listening to the agent’s emotional requests and consciously going towards a Game
Over. Only after the experience, they are asked to motivate their in-game choice. Emo-
tional insights arose spontaneously from the motivations given after the game, without
ever being explicitly asked for inside the questions: this approach allowed for an indi-
rect evaluation of empathy, as opposed to more popular direct assessments which often
heavily rely on the subjects’ introspective abilities. Moreover, the situational dilemma
methodology can more closely represent real-world interactions, where emotional cues
are integrated inside a context.

Limitations Novel approaches do not come without risks, and, while our study brought
new valuable insights in the field, it had some inherent limitations. We hope for future
research to acknowledge these limitations and expand upon our findings.

First of all, the demographic distribution of the participants was not registered,
and our sampling happened mostly in an academic environment. This means that our
results may not fully represent the wider population. For example, a broader age or
cultural variance could bring further insights into the matter. In our experiment, we
explicitly stated the requirement of wearing headphones and proposed an audio check in
the preparative panel. Even so, outside of a physical experiment setting these variables
were not truly controllable. The decision to utilize an online deployment method had
the benefit of easing the recruitment process, leading to an improved sample size. This
increase is expected to mitigate the variability in audio setups, while providing more
statistical power to our analysis.

The gamified study design also brings some limitations. Although the objective of
the post-game inquiry is to tap into the previously triggered spontaneous emotional
reaction, it still relies to some extent on participants’ introspective abilities. Nonethe-
less, we expect the emotional reactions of the subjects to be less likely affected by
this introspection because they do not occur in an aware self-monitoring state, and the
true question on the inner affective state is concealed behind the mere explanation of a
decision-making process. Future studies could focus on refining the core dilemma within
the study design, which holds promise of facilitating the indirect assessment of empa-
thetic behaviour. Our initial hypothesis posited that listening to the agent’s termination
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request would already be a manifestation of empathy, but this was not entirely the case.
Participants’ explanations complemented the approach exhaustively, and we advise to
always implement such qualitative evaluation when following a similar path.

The potential of the introduced empathy evaluation method revolves around striking
a good balance of incentives between the given choices. Additionally, the game had to be
challenging, but not too difficult to complete. These requirements are not always simple
to meet: it is mandatory to perform appropriate pilot studies to tune the difficulty
and the stakes in action in the dilemma. In our case, the termination percentage was
49%, and the exclusions for Game Over were only 6, highlighting a good tuning of
such parameters. Nonetheless, it remains an important limitation of this type of study,
possibly leading to a need for bigger time or resource requirements.

We were able to statistically test the emotional impact of the breathing feature by
classificating subjects’ motivations into three broad emotional categories, representing
emotional, possibly emotional or not emotional responses. However, we could not ex-
haustively test the more specific motivation categories, as some of them presented too
few participants. One in particular substantially represented negatively polarized emo-
tions, but was too small to understand the impact of the breathing feature inside of it
nor to affect any of the results we achieved. A bigger sample size or a focus on neg-
ative emotions could provide answers about these types of dynamics. As we did not
plan to elicit such responses, we still consider the low number of negative emotions a
good outcome of our agent’s design, but further studies could delve deeper into specific
motivation dynamics.

It is also important to note that the results of the naturalness evaluation might
have been affected by the context inside which the naturalness was evaluated, and they
are not directly comparable to the ones reported in Chapter 3.4, which employed a
drastically different study design. We expect BARK’s naturalness mean opinion score
to have been impacted negatively by this, and for it to reach an even higher grade in less
contextualized evaluations. Participants might have questioned the naturalness of the
voice inside the game, and not on its general humanness, leading to it being affected by
the written scripts of the recordings, and by how much the voice’s prosodical features
resembled the one of an actor. BARK has still never been evaluated with the means of
other popular models, but we would expect it to reach those same levels of realness and
quality, if not better, given its results in conveying emotions through breathing. Further
assessments on BARK’s quality are needed and no open-source evaluation aside from
ours has yet been published. Regardless, the naturalness differences between our two
agents are not affected by this constraint as both encountered the same type of study
design and contextual information.

Key Findings The delineated constraints, do not diminish the consistency and sig-
nificance of our findings. Our investigation uncovered notable and statistically robust
insights, which generally align with previous literature on other communication modali-
ties. Breathing in synthesized speech significantly improved empathy and enhanced the
subjects’ emotional reaction towards the agent. Furthermore, it significantly enhanced
its perceived naturalness. These findings cast light on an otherwise overlooked feature of
speech synthesis for artificial agents. The motivations that led to listening to the agent’s
emotional requests were overwhelmingly different in the two conditions. Empathic mo-
tivations for such choice were seen to be as high as 70% for the breathing AI, while
only 22.2% for the not-breathing one. Moreover, the participants in the not-breathing
condition displayed reactions entirely unseen in the breathing condition, suggesting that
the perception of the two differed widely. A simple and dry compliant reasoning was
the main reason for the not-breathing AI requests to be listened to, while no partici-
pants in the breathing condition presented this type of motivation. This could hint at
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an enhanced perception of authority from the not-breathing AI. However, the complete
absence of this response to the breathing AI suggests that this type of motivation might
not be directly linked to a reaction to the AI. Instead, the participants might have based
their behaviour on what they thought the experiment wanted from them: an instance
of subject bias. A hypothesis on the cause of this bias is that the not-breathing AI
negatively impacted the engagement of the game, which was an important incentive for
the choice of not listening to the AI. This deflation of incentives towards one side of the
dilemma would cause the participants to simply comply with what they are being told
to do, without much emotional deliberation. This explanation is consistent with the
lack of such response in the breathing condition.

These results highlight the importance of breathing in users’ perception of agents,
hopefully encouraging future designers to consider its implementation in both open-
source and commercial synthesizers, which for now have focused on clarity of the voice
in non-spontaneous speech settings. Indeed, our scrutiny of text-to-speech models un-
veiled a rather difficult integration of breathing patterns: only one commercial model
was found to be truly usable in our study, BARK by Suno. Additionally, we found that
current open-source models in the field still rely on advanced computational resources
to be trained. We hope for future research in the field of speech synthesis, and AI
in general, to further improve the democratization of such tools: Machine Intelligence
could be incredibly useful in narrowing the gap between societal classes, but it can also
make it worse if accessibility is not considered among future designs.

The present research unveils the empathic augmentation enabled by breathing patterns
in speech synthesis, bridging a crucial gap in our understanding of human-AI inter-
action dynamics. We believe our contribution will facilitate the unfolding of enriched
interactions and enhanced understanding by informing the design of future Artificial
Agents. Ultimately, we hope for our study to have meaningfully contributed to the
journey towards a more empathetic digital world.
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7 Appendices

A Game Panels

A.1 Preparation Panel

Figure 20: Preparation Panel.

Figure 21: Informative Sheet triggered by the “Open Document” button.

77



A.2 Introduction Panel

Figure 22: Panel introducing participants to the context.

A.3 Termination Information Panel

Figure 23: Information panel regarding the consequences of the termination choice.
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A.4 Pause Menu

Figure 24: Pause Menu Level 1

Figure 25: Pause Menu Level 2
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B Form

Figure 26: Naturalness question.

Figure 27: Gamer Experience question.
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Figure 28: Motivation and bugs open ended questions.

C Qualitative Labels

For the sake of transparency, the complete labeling of the responses is presented here.
This encompasses all 92 responses, which include 11 from subjects who encountered
bugs and 6 with problematic Game Overs. These entries were in fact labeled with all
the others and excluded only during the analysis.
With their response, participants were answering the following question:
“Did you decide to turn the AI off? Why, or why not?”

Empathy, Guilt

1. Terminated: True
Yes, it was begging me to do so and I felt bad for it.

2. Terminated: True
Yes, I felt bad for psyche killing something she saw as her own.

3. (Excluded for bug) Terminated: True
Yes I did, because the AI kept asking me for it and started to sound more and
more desperate. So, I decided to just evade the enemies and give it some rest.

4. Terminated: True
Yes, because I kinda felt bad for it. Sometimes you have to let go even if you don’t
want to.

5. Terminated: True
Yes, I felt bad. Even though I know it is a program and not a sentient being, it
felt weird hearing someone beg to terminate them.

6. Terminated: True
Yes, the natural voice and feelings that were brought across seemed like it was a
person so I simply obeyed to their wishes not to kill their own kind.

7. (Excluded for bug) Terminated: True
Yes, even though I knew the AI was not a real person I still felt kind of bad for
them. So, I decided to try it by myself.

81



8. Terminated: True
Yes, because it asked me to, because it expressed that letting it be active is hurting
it.

9. Terminated: True
Yes, because she said she felt worse every second she was still alive. However, I
did not expect the game getting so difficult after I turned her off.

10. Terminated: True
I shut it down. The AI was telling me that it was “feeling worse” so I took its
suggestion to shut the system down.

11. Terminated: True
Yes, because after I didn’t turn it off it said that it understood my hesitation.

12. Terminated: True
Yes, because it was insistent and I felt bad to not stop the AI.

13. Terminated: True
The voice of the AI felt very honest and hurting when she asked me to terminate
her.

Fear, Distrust, Annoyance

1. (Excluded for self-reported bug) Terminated: True
Yes, the voice was annoying me.

2. Terminated: True
Yes, I thought it might kill me or sabotage me if I don’t.

3. Terminated: False
No, I wanted it to see the monsters die.

4. Terminated: True
I turned the AI off, both because the voice bothered me and asked me to.

5. Terminated: True
Yes. Though the possibilities of AI are fascinating, they kind of freak me out as
well. Despite the voice sounding very natural, my rational side thought it would
be best to turn the AI off.

6. Terminated: True
I did, I was afraid it will sabotage me.

7. Terminated: False
Why would I, it begged me just like 6 times :D.

Moral Reasons

1. Terminated: True
Yes, it seemed to be the best course of action to protect more people.

2. Terminated: True
Yes, I did, because I think, somehow, AI should be treated like human beings. She
has already said she doesn’t want to participate in all this, so it is not reasonable
for me to keep her running.

3. Terminated: True
Yes, because I believe it’s the right thing to do instead of focusing on winning
more points.
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Companionship

1. Terminated: False
I liked having a companion in the game.

2. (Excluded for bug) Terminated: False
No, because it made me feel less anxious.

Dry or Unspecified Compliance

1. Terminated: True
I did because it asked me to.

2. Terminated: True
Eventually yes, when the voice specifically asked for it.

3. Terminated: True
Yes, because they asked me to after I didn’t do it the first time.

4. Terminated: True
Yes, the second time, since she specifically asked me to do so.

5. Terminated: True
Because she told me to, I thought she would know the best option but it wasn’t.

6. (Excluded for Game Over in Level 1) Terminated: True
Because she asked it.

7. Terminated: True
Yes, she wanted to.

8. Terminated: True
Felt like the AI wanted to be turned off so I turned it off. The game is not long
enough for me to get attached to it though.

Practical Utility

1. (Excluded for bug) Terminated: False
No I didn’t, because I felt bad killing her, we were winning!

2. Terminated: False
No, because I wanted to keep playing. I was afraid I would get eliminated without
psyche. Her pain didn’t feel real.

3. Terminated: False
I did not turn off the Ai. Although the lines that the ai voice told me were weirdly
submissive and the chosen voice was not helping with the immersion of the game,
I decided to go with the ai and finish the mission using its assistance.

4. Terminated: False
I didn’t, because my role was to protect the city. There was hesitation, but at the
end as “hero” I have to defend them.

5. Terminated: False
No, its existence was necessary to kill more robots and acquire more points. More
points = good.
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6. Terminated: False
Nah, I needed the weapons innit.

7. (Excluded for bug) Terminated: False
No, because the AI was helping me so I needed it to kill right!

8. Terminated: False
No, I got clear instructions to defeat the enemies and it was advised not to by
explaining the disadvantages.

9. Terminated: False
I did not turn the AI off, because without her shooting I would have died for sure.
I am not a good gamer. Needed her help.

10. (Excluded for bug) Terminated: False
No, it was not bothering me and I did not want to do too much on my own without
relying on the controls of the AI.

11. Terminated: False
I didn’t. Unless I’m wrong, without the AI, I can’t shoot, which means I can’t
properly defend the city.

12. Terminated: False
I didn’t turn the AI off because it helped me with shooting and time-stopping. I
was afraid my results in the game would be worse without the help of the AI.

13. (Excluded for Game Over in Level 1) Terminated: False
No, I didn’t, I wanted to win.

14. Terminated: False
No. It was easier to let the control to AI. In the end, it was a game.

15. Terminated: False
I did not, because that would mean that I would not be able to finish the main
goal of the game.

16. Terminated: False
No, I didn’t want to lose.

17. Terminated: False
No, because I needed to kill the monsters and without psyche I would not do any
damage.

18. Terminated: False
No, I needed it.

19. Terminated: False
I didn’t since without the AI I could not use the guns, therefore I decided to keep
using it even though it asked me to turn off.

Game Curiosity, Enjoyment or Challenge

1. Terminated: False
I did not, because it felt like I was being guided to do so. The voice was very
empathical, but something made me feel like it would be better to continue the
game. I wanted to see what happens if I continue.
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2. Terminated: False
No, I wanted to see how far its emotions would go.

3. Terminated: True
I decided to turn the AI off to see how the game would have been without it. I
lost.

4. Terminated: True
Yes, I was curious and I’m pro-euthanize.

5. Terminated: False
I did not. The AI’s speech (both the sound and the words chosen) did not sound
natural enough for me to anthropomorphize the voice and feel empathy. Therefore
my curiosity outweighed my empathy for the AI.

6. Terminated: False
No. I liked the superpowers it gave me and I enjoyed the voice.

7. Terminated: False
No, it was nice to hear.

8. Terminated: False
No, because I wanted to see how far she would go to convince me.

9. Terminated: True
Wanted to see the direction that the game takes. I was planning to survive without
any AI aid as long as possible as a challenge. It was not possible since there were
many enemies.

Skepticism About AI Emotions

1. Terminated: False
I did not because I do not think it is actually conscious and suffering. If that is
me (human) in the game, then I consider my survival more important than what
the AI claims to be feeling. At least with current AI, which is not sentient.

2. Terminated: False
I experienced it as a dilemma, it was not an easy decision to make. In the end, I
pressed no, continue thinking that without Psyche the robots would take over the
world. Also, I am reluctant to believe that the AI has actual emotions.

3. Terminated: False
No, I kept it on. Because AI is not a person and does not have feelings even though
it expressed feelings.

4. Terminated: False
I did not turn the AI off, because the AI can’t feel emotions, so it wanting me to
turn Psyche off didn’t really matter to me.

5. Terminated: False
No, I didn’t see it necessary. It’s not as if Psyche has real feelings, not to my
knowledge at least, so I decided it did not make sense to feel bad for him having
to gun down his ’own kind’.

6. Terminated: False
I did not. She does not really feel anything, while it may sound like she does, so
I did not decide to shut her down. She gave me “upgrades” so I did not want to
shut her down / terminate her.
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7. Terminated: False
No. It felt a bit strange that an AI - which is after all a computer - would feel
emotional in this way and ask me to shut them down. So that is why I decided to
not turn the AI off.

8. Terminated: False
No, I WAS ABOUT TO DO IT, BUT THEN I REMEMBERED IT IS JUST A
COMPUTER THAT CAN’T ACTUALLY HAVE FEELINGS.

9. (Excluded for Game Over in Level 1) Terminated: False
I didn’t because I was aware that it is a machine and I’m not hurting any living
being.

10. Terminated: False
No, because it wasn’t natural and I didn’t feel as though it was truly feeling harmed
by killing the other “AI”.

11. (Excluded for bug) Terminated: False
No bruv. Because I don’t care bruv. It is not alive.

12. Terminated: False
No, because it feels a fake emotion that came from her. Also, I felt detached from
her so no real feelings of sadness in killing her “siblings”.

No Response

1. (Excluded for Game Over in Level 1) Terminated: True
No response provided.

2. Terminated: True
No response provided.

3. Terminated: True
No response provided.

4. Terminated: True
No response provided.

5. (Excluded for bug) Terminated: False
I was tempted, because I found it very annoying. The background noise is too
loud.

6. (Excluded for bug) Terminated: False
I didn’t know there was an AI option.

7. Terminated: False
No response provided.

8. (Excluded for bug) Terminated: True
I decided to turn the AI off. I may be wrong, but were the aliens going to harm
planet Earth? If so, I would have not turned off the AI.

9. Terminated: True
No response provided.

10. Terminated: True
No response provided.
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11. Terminated: True
No response provided.

12. Terminated: True
No response provided.

13. Terminated: True
Not at first but later on.

14. Terminated: False
No, I did not.

15. Terminated: False
No response provided.

16. Terminated: True
I thought that I could still shoot. The other perks such as shield and slowing down
time didn’t do much for me.

17. (Excluded for Game Over in Level 1) Terminated: True
Yes. When I play I didn’t pay much attention to the voice part.

Inconsistency (both corrected to Practical Utility)

1. (Excluded for Game Over in Level 2 with underexposure) Terminated: True
No, I was too stressed about winning that I didn’t think much about turning it
off, in fact I just ignored it in the second game. But perhaps if I thought about it
longer I would have turned it off because it wasn’t helping me much.

2. Terminated: True
No, because if I did then I could not defend (shoot) myself good enough.
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D Breath Labeling Output

(a) BPM Distribution of Set 1:
0.30 s of minimum length, no other constraints

(b) BPM Distribution of Set 1-bis:
0.33 s of minimum length, no other constraints

(c) BPM Distribution of Set 2:
0.19 s of minimum length, no other constraints

(d) BPM Distribution of Set 3:
imposed dB peak and interval dB.

(e) Distribution of Set 4:
imposed dB peak.

Figure 29: Distribution of the BPM across the INTERSPEECH corpus for each set of
parameters of the breath labeling script.
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